Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Michaelis-Menten kinetics, enzyme substrat

FIGURE 15-35 Elasticity coefficient, e, of an enzyme with typical Michaelis-Menten kinetics. At substrate concentrations far below the Km, each increase in [S] produces a correspondingly large increase in the reaction velocity, v. For this region of the curve, the enzyme has an elasticity, e, of about 1.0. At [S] Km, increasing [S] has little effect on v s here is close to 0.0. [Pg.593]

Michaelis-Menten kinetics Kineties of eonversion of substrates in enzyme-eatalyzed reaetions. [Pg.905]

Saturation kinetics are also called zero-order kinetics or Michaelis-Menten kinetics. The Michaelis-Menten equation is mainly used to characterize the interactions of enzymes and substrates, but it is also widely applied to characterize the elimination of chemical compounds from the body. The substrate concentration that produces half-maximal velocity of an enzymatic reaction, termed value or Michaelis constant, can be determined experimentally by graphing r/, as a function of substrate concentration, [S]. [Pg.273]

Most enzymes catalyse reactions and follow Michaelis-Menten kinetics. The rate can be described on the basis of the concentration of the substrate and the enzymes. For a single enzyme and single substrate, the rate equation is ... [Pg.97]

The initial reaction rate (v0) obtained from each substrate concentration was fitted to Michaelis-Menten kinetics using enzyme kinetics. Pro (EKP) Software (ChemSW product,... [Pg.130]

Runge-Kutta. Consider the disappearance of substrate in an enzyme-catalyzed reaction that follows Michaelis-Menten kinetics ... [Pg.121]

If the enzyme charged to a batch reactor is pristine, some time will be required before equihbrium is reached. This time is usually short compared with the batch reaction time and can be ignored. Furthermore, 5o Eq is usually true so that the depletion of substrate to establish the equilibrium is negligible. This means that Michaelis-Menten kinetics can be applied throughout the reaction cycle, and that the kinetic behavior of a batch reactor will be similar to that of a packed-bed PFR, as illustrated in Example 12.4. Simply replace t with thatch to obtain the approximate result for a batch reactor. [Pg.444]

The inactivation is normally a first-order process, provided that the inhibitor is in large excess over the enzyme and is not depleted by spontaneous or enzyme-catalyzed side-reactions. The observed rate-constant for loss of activity in the presence of inhibitor at concentration [I] follows Michaelis-Menten kinetics and is given by kj(obs) = ki(max) [I]/(Ki + [1]), where Kj is the dissociation constant of an initially formed, non-covalent, enzyme-inhibitor complex which is converted into the covalent reaction product with the rate constant kj(max). For rapidly reacting inhibitors, it may not be possible to work at inhibitor concentrations near Kj. In this case, only the second-order rate-constant kj(max)/Kj can be obtained from the experiment. Evidence for a reaction of the inhibitor at the active site can be obtained from protection experiments with substrate [S] or a reversible, competitive inhibitor [I(rev)]. In the presence of these compounds, the inactivation rate Kj(obs) should be diminished by an increase of Kj by the factor (1 + [S]/K, ) or (1 + [I(rev)]/I (rev)). From the dependence of kj(obs) on the inhibitor concentration [I] in the presence of a protecting agent, it may sometimes be possible to determine Kj for inhibitors that react too rapidly in the accessible range of concentration. ... [Pg.364]

Let us consider the determination of two parameters, the maximum reaction rate (rITOIX) and the saturation constant (Km) in an enzyme-catalyzed reaction following Michaelis-Menten kinetics. The Michaelis-Menten kinetic rate equation relates the reaction rate (r) to the substrate concentrations (S) by... [Pg.60]

In the presence of sucrose alone as the single substrate, initial reaction rates follow Michaelis-Menten kinetics up to 200 mM sucrose concentration, but the enzyme is inhibited by higher concentrations of substrate.30 The inhibitor constant for sucrose is 730 mM. This inhibition can be overcome by the addition of acceptors.31,32 The enzyme activity is significantly enhanced, and stabilized, by the presence of dextran, and by calcium ions. [Pg.106]

Most catalytic cycles are characterized by the fact that, prior to the rate-determining step [18], intermediates are coupled by equilibria in the catalytic cycle. For that reason Michaelis-Menten kinetics, which originally were published in the field of enzyme catalysis at the start of the last century, are of fundamental importance for homogeneous catalysis. As shown in the reaction sequence of Scheme 10.1, the active catalyst first reacts with the substrate in a pre-equilibrium to give the catalyst-substrate complex [20]. In the rate-determining step, this complex finally reacts to form the product, releasing the catalyst... [Pg.259]

Enzyme mimics catalyze reactions by mechanisms which are demonstrably enzyme-like. The minimum requirement is that the reactions concerned should involve an initial binding interaction between the substrate and the catalyst. This gives rise to Michaelis-Menten kinetics reactivity is measured in terms of the familiar parameters kCat and Km and we use E to denote enzyme mimic as well as enzyme. ... [Pg.342]

The quantity of any given solute being presented to the reabsorptive mechanisms is determined by the product of the GFR and the solute concentration in plasma. One of the features of any carrier-mediated process is its limited capacity. Binding of a substance to its transport protein follows the same principles as substrate binding to an enzyme or hormone binding to its receptor so we may appropriately liken the dynamics to Michaelis-Menten kinetics. [Pg.265]

MS is lower than that of M the system is in the regime of substrate saturation addition of more S does not lead to a rate increase. The behaviour of the reaction rate in case B is typical of enzymes and in biochemistry this is referred to as Michaelis-Menten kinetics. The success of the application of the Michaelis-Menten kinetics in biochemistry is based on the fact that indeed only two reactions are involved the complexation of the substrate in the pocket of the enzyme and the actual conversion of the substrate. Usually the exchange of the substrate in the binding pocket is very fast and thus we can ignore the term k2[H2] in the denominator. Complications arise if the product binds to the binding site of the enzyme, product inhibition, and more complex kinetics result. [Pg.66]

In chymotrypsin and other serine proteases the imidazole moiety of histidine acts as a general base not as a nucleophile as is probably the case in the catalysis of activated phenyl ester hydrolysis by (26). With this idea in mind, Kiefer et al. 40) studied the hydrolysis of 4-nitrocatechol sulfate in the presence of (26) since aryl sulfatase, the corresponding enzyme, has imidazole at the active center. Dramatic results were obtained. The substrate, nitrocatechol sulfate, is very stable in water at room temperature. Even the presence of 2M imidazole does not produce detectable hydrolysis. In contrast (26) cleaves the substrate at 20°C. Michaelis-Menten kinetics were obtained the second-order rate constant for catalysis by (26) is 10 times... [Pg.218]

Figure 1. Plot of v/V ax versus the millimolar concentration of total substrate for a model enzyme displaying Michaelis-Menten kinetics with respect to its substrate MA (i.e., metal ion M complexed to otherwise inactive ligand A). The concentrations of free A and MA were calculated assuming a stability constant of 10,000 M k The Michaelis constant for MA and the inhibition constant for free A acting as a competitive inhibitor were both assumed to be 0.5 mM. The ratio v/Vmax was calculated from the Michaelis-Menten equation, taking into account the action of a competitive inhibitor (when present). The upper curve represents the case where the substrate is both A and MA. The middle curve deals with the case where MA is the substrate and where A is not inhibitory. The bottom curve describes the case where MA is the substrate and where A is inhibitory. In this example, [Mfotai = [Afotai at each concentration of A plotted on the abscissa. Note that the bottom two curves are reminiscent of allosteric enzymes, but this false cooperativity arises from changes in the fraction of total "substrate A" that has metal ion bound. For a real example of how brain hexokinase cooperatively was debunked, consult D. L. Purich H. J. Fromm (1972) Biochem. J. 130, 63. Figure 1. Plot of v/V ax versus the millimolar concentration of total substrate for a model enzyme displaying Michaelis-Menten kinetics with respect to its substrate MA (i.e., metal ion M complexed to otherwise inactive ligand A). The concentrations of free A and MA were calculated assuming a stability constant of 10,000 M k The Michaelis constant for MA and the inhibition constant for free A acting as a competitive inhibitor were both assumed to be 0.5 mM. The ratio v/Vmax was calculated from the Michaelis-Menten equation, taking into account the action of a competitive inhibitor (when present). The upper curve represents the case where the substrate is both A and MA. The middle curve deals with the case where MA is the substrate and where A is not inhibitory. The bottom curve describes the case where MA is the substrate and where A is inhibitory. In this example, [Mfotai = [Afotai at each concentration of A plotted on the abscissa. Note that the bottom two curves are reminiscent of allosteric enzymes, but this false cooperativity arises from changes in the fraction of total "substrate A" that has metal ion bound. For a real example of how brain hexokinase cooperatively was debunked, consult D. L. Purich H. J. Fromm (1972) Biochem. J. 130, 63.
An enzyme is said to obey Michaelis-Menten kinetics, if a plot of the initial reaction rate (in which the substrate concentration is in great excess over the total enzyme concentration) versus substrate concentration(s) produces a hyperbolic curve. There should be no cooperativity apparent in the rate-saturation process, and the initial rate behavior should comply with the Michaelis-Menten equation, v = Emax[A]/(7 a + [A]), where v is the initial velocity, [A] is the initial substrate concentration, Umax is the maximum velocity, and is the dissociation constant for the substrate. A, binding to the free enzyme. The original formulation of the Michaelis-Menten treatment assumed a rapid pre-equilibrium of E and S with the central complex EX. However, the steady-state or Briggs-Haldane derivation yields an equation that is iso-... [Pg.467]

Some investigators also unnecessarily apply the further restriction that Michaelis-Menten kinetics refers only to enzymes catalyzing the conversion of a single substrate to a single product. Were this taken to its extreme, only isomerases would qualify, because most one-substrate systems utilize water as a second substrate or product. See Michaelis-Menten Equation Uni Uni Mechanism Enzyme Rate Equations (1. The Basics)... [Pg.468]

Obviously, extrapolation procedures are impractical for routine determination of enzyme activities. When substrate saturation-curves conform to rectangular hyperbolas, reasonable concentrations of substrates should equal 10 to 20 times the respective Km values. As outlined above, application of this rule to assays of bilirubin UDP-glycosyltransferase activities is hampered by substrate inhibition and by occasional deviation from Michaelis-Menten kinetics. The best alternative in such cases may be to choose the concentrations at optimal enzyme activity. However, great care should be exercised in interpreting the results. When a bio-... [Pg.256]

MW 27,500) with no cofactors or metal ions reqnirement for its function, it displays Michaelis-Menten kinetics and it is secreted in large amounts by a wide variety of Bacillus species. Subtilisin is also among the most important industrial enzymes due to its use in laundry detergents. Protein engineering strategies for subtilisin have focused on a number of aspects, namely catalysis, substrate specificity, thermal and oxidative stability and pH profile. We will describe briefly each of these aspects. [Pg.300]

Data in Fig. 9 show that ferrocene is the most reactive in this family of HRP substrates. The rate constant k7 of 2 x 105 M-1 s 1 at pH 7 and 25 °C indicates that its reactivity is comparable with the frequently used electron donors of HRP. Ferrocene follows first-order kinetics and k7 should be compared with the ratio cat/ 4Vb where kc t and Km are the catalytic and the Michaelis constants for substrates obeying the Michaelis-Menten kinetics, respectively. Such are iodide, guaiacol, and ABTS (2,2 -azino-bis(3-ethylbenzothiazoline-6 -sulfonic acid) (128). The available ratios of 0.15 x 105, 1.3 x 105, and 34 x 105 M 1 s-1, respectively (129), indicate that ferrocene is more reactive than iodide and comparable with guaiacol. High reactivity of ferrocene makes it a convenient analytical reagent for routine assays of H2O2 in the presence of HRP by monitoring the enzymically produced ferricenium dye at 617 nm (113). [Pg.230]


See other pages where Michaelis-Menten kinetics, enzyme substrat is mentioned: [Pg.439]    [Pg.175]    [Pg.90]    [Pg.438]    [Pg.141]    [Pg.206]    [Pg.358]    [Pg.70]    [Pg.218]    [Pg.288]    [Pg.409]    [Pg.318]    [Pg.138]    [Pg.192]    [Pg.196]    [Pg.209]    [Pg.131]    [Pg.219]    [Pg.430]    [Pg.465]    [Pg.255]    [Pg.255]    [Pg.256]    [Pg.137]    [Pg.198]   
See also in sourсe #XX -- [ Pg.40 , Pg.158 ]




SEARCH



Enzyme kinetic

Enzyme kinetics

Enzyme kinetics substrate

MENTEN

Menten kinetics

Michaelis enzyme kinetics

Michaelis kinetics

Michaelis-Menten

Michaelis-Menten enzyme

Michaelis-Menten enzyme kinetic

Michaelis-Menten enzyme kinetics

Michaelis-Menten kinetic

Michaelis-Menten kinetics

Michaelis-Menten kinetics enzyme substrate

Michaelis-Menten kinetics enzyme substrate

Substrate and Product Concentration in Enzymes Following Classical Michaelis-Menten Kinetics

Substrates enzymes

© 2024 chempedia.info