Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micelles radical chain reactions

Emulsion polymerization, mentioned earlier during the discussion of free-radical chain reactions, is a process that uses a soap to generate an emulsion. The resultant micelles in the emulsion serve as centers for reaction. [Pg.266]

Inhibition of peroxidation of unsaturated lipid chains in biomembranes is of particular significance and interest, because uncontrolled oxidation disrupts the protective layer around cells provided by the membranes. Furthermore, radical chain transfer reactions can also initiate damage of associated proteins, enzymes and DNA. The volume of literature is immense and expanding in the field of antioxidants. We will select certain milestones of advances where micelles and lipid bilayers, as mimics of biomembranes, provided media for quantitative studies on the activities of phenolic antioxidants. One of us, L. R. C. Barclay, was fortunate to be able to spend a sabbatical in Dr. Keith Ingold s laboratory in 1979-1980 when we carried out the first controlled initiation of peroxidation in lipid bilayers of egg lecithin and its inhibition by the natural antioxidant a-Toc . A typical example of the early results is shown in Figure 4. The oxidizability of the bilayer membrane was determined in these studies, but we were not aware that phosphatidyl cholines aggregate into reverse micelles in non-protic solvents like chlorobenzene, so this determination was not correct in solution. This was later corrected by detailed kinetic and P NMR studies, which concluded that the oxidizability of a lipid chain in a bilayer is very similar to that in homogeneous solution . ... [Pg.884]

First, the number of polymer chains per particle is in general very low, sometimes close to one [4,66,69,70,75,76,83,84,90,91]. As a general trend, rip increases slightly with the degree of conversion [75,83]. This increase was accounted for by the capture of radicals by pre--existing polymer particles, these competing more effectively with the monomer-swollen micelles as the reaction proceeds. Limited flocculation at later stages of the reaction was also envisioned. [Pg.690]

The process of emulsion polymerisation begins when the free radicals derived from the, usually water-soluble, polymerisation initiator enter the monomer-saturated micelles where they find a sufficient number of solubilised molecules to start a rapid chain reaction (Elgood and Gilbekian, 1973). Each polymer radical first exhausts the monomer contained in the micelle and then captures additional supplies from 50 or more other micelles before the chain reaction is terminated. Some of the depleted micelles then break up and the released emulsifier molecules are adsorbed at the surface of the newly formed primary polymer particles (Dunn, 1971). The remainder are replenished by diffusion from the emulsified monomer droplets, which act essentially as reservoirs. [Pg.221]

Chain-Growth Associative Thickeners. Preparation of hydrophobically modified, water-soluble polymer in aqueous media by a chain-growth mechanism presents a unique challenge in that the hydrophobically modified monomers are surface active and form micelles (50). Although the initiation and propagation occurs primarily in the aqueous phase, when the propagating radical enters the micelle the hydrophobically modified monomers then polymerize in blocks. In addition, the hydrophobically modified monomer possesses a different reactivity ratio (42) than the unmodified monomer, and the composition of the polymer chain therefore varies considerably with conversion (57). The most extensively studied monomer of this class has been acrylamide, but there have been others such as the modification of PVAlc. Pyridine (58) was one of the first chain-growth polymers to be hydrophobically modified. This modification is a post-polymerization alkylation reaction and produces a random distribution of hydrophobic units. [Pg.320]

As the quinone stabilizer is consumed, the peroxy radicals initiate the addition chain propagation reactions through the formation of styryl radicals. In dilute solutions, the reaction between styrene and fumarate ester foUows an alternating sequence. However, in concentrated resin solutions, the alternating addition reaction is impeded at the onset of the physical gel. The Hquid resin forms an intractable gel when only 2% of the fumarate unsaturation is cross-linked with styrene. The gel is initiated through small micelles (12) that form the nuclei for the expansion of the cross-linked network. [Pg.317]

The termination constants kt found previously (see Table XVII, p. 158) are of the order of 3 X10 1. mole sec. Conversion to the specific reaction rate constant expressed in units of cc. molecule" sec. yields A f=5X10". At the radical concentration calculated above, 10 per cc., the rate of termination should therefore be only 10 radicals cc. sec., which is many orders of magnitude less than the rate of generation of radicals. Hence termination in the aqueous phase is utterly negligible, and it may be assumed with confidence that virtually every primary radical enters a polymer particle (or micelle). Moreover the average lifetime of a chain radical in the aqueous phase (i.e., 10 sec.) is too short for an appreciable expectation of addition of a dissolved monomer molecule by the primary radical prior to its entrance into a polymer particle. [Pg.209]

The active alkoxyl radicals formed by this reaction start new chains. Apparently, the hydroperoxide group penetrates in the polar layer of the micelle and reacts with the bromide anion. The formed hydroxyl ion remains in the aqueous phase, and the MePhCHO radical diffuses into the hydrocarbon phase and reacts with ethylbenzene. The inverse emulsion of CTAB accelerates the decay of hydroperoxide MePhCHOOH. The decomposition of hydroperoxide occurs with the rate constant k = 7.2 x 1011 exp(-91.0/R7) L mol-1 s-1 (T = 323-353 K, CTAB, ethylbenzene [28]). The decay of hydroperoxide occurs more rapidly in an 02 atmosphere, than in an N2 atmosphere. [Pg.439]

In 1977, Kellogg and Fridovich [28] showed that superoxide produced by the XO-acetaldehyde system initiated the oxidation of liposomes and hemolysis of erythrocytes. Lipid peroxidation was inhibited by SOD and catalase but not the hydroxyl radical scavenger mannitol. Gutteridge et al. [29] showed that the superoxide-generating system (aldehyde-XO) oxidized lipid micelles and decomposed deoxyribose. Superoxide and iron ions are apparently involved in the NADPH-dependent lipid peroxidation in human placental mitochondria [30], Ohyashiki and Nunomura [31] have found that the ferric ion-dependent lipid peroxidation of phospholipid liposomes was enhanced under acidic conditions (from pH 7.4 to 5.5). This reaction was inhibited by SOD, catalase, and hydroxyl radical scavengers. Ohyashiki and Nunomura suggested that superoxide, hydrogen peroxide, and hydroxyl radicals participate in the initiation of liposome oxidation. It has also been shown [32] that SOD inhibited the chain oxidation of methyl linoleate (but not methyl oleate) in phosphate buffer. [Pg.775]

The rate of production of free radicals at 50°C is about 10 radicals/mL/sec. Thus, since there are 10 micelles for every free radical produced in 1 sec, inoculation of any of the 10 micelles/mL is infrequent. Hence, since propagation is a very fast reaction, long chains are... [Pg.189]

Ito s group [83] reported the micellar polymerization mechanism was operative during the radical polymerization of PEO macromonomers in cyclohexane and water under similar reaction conditions. The reaction medium has an important effect on the polymerization behavior of macromonomers. Cyclohexane was chosen as a nonpolar type of solvent. The polymerization was found to be independent of the lengths of p-alkyl group (R) and the PEO chain in benzene. On the other hand, the rate of polymerization in cyclohexane increased with increasing number of EO units. This may be attributed to the formation of aggregates (micelles) and/or compartmentalization of reaction loci,i.e., polymerization in distinct aggregates (polymer particles). The C12-(EO)14-MA macromonomer polymerized faster in bulk than in benzene but far slower than in water. [Pg.50]

Furimsky E, Howard JA, Selwyn J (1980) Absolute rate constants for hydrocarbon autoxidation. 28. A low temperature kinetic electron spin resonance study of the self- reactions of isopropylperoxy and related secondary alkylperoxy radicals in solution. Can J Chem 58 677-680 Gebicki JM, Allen AO (1969) Relationship between critical micelle concentration and rate of radiolysis of aqueous sodium linolenate. J Phys Chem 73 2443-2445 Gebicki JM, Bielski BHJ (1981) Comparison of the capacities of the perhydroxyl and the superoxide radicals to initiate chain oxidation of linoleic acid. J Am Chem Soc 103 7020-7022 Gilbert BC, Holmes RGG, Laue HAH, Norman ROC (1976) Electron spin resonance studies, part L. Reactions of alkoxyl radicals generated from alkylhydroperoxidesand titanium(lll) ion in aqueous solution. J Chem Soc Perkin Trans 2 1047-1052... [Pg.188]

Comparison between Experimental Results and Model Predictions. As will be shown later, the important parameter e which represents the mechanism of radical entry into the micelles and particles in the water phase does not affect the steady-state values of monomer conversion and the number of polymer particles when the first reactor is operated at comparatively shorter or longer mean residence times, while the transient kinetic behavior at the start of polymerization or the steady-state values of monomer conversion and particle number at intermediate value of mean residence time depend on the form of e. However, the form of e influences significantly the polydispersity index M /M of the polymers produced at steady state. It is, therefore, preferable to determine the form of e from the examination of the experimental values of Mw/Mn The effect of radical capture mechanism on the value of M /M can be predicted theoretically as shown in Table II, provided that the polymers produced by chain transfer reaction to monomer molecules can be neglected compared to those formed by mutual termination. Degraff and Poehlein(2) reported that experimental values of M /M were between 2 and 3, rather close to 2, as shown in Figure 2. Comparing their experimental values with the theoretical values in Table II, it seems that the radicals in the water phase are not captured in proportion to the surface area of a micelle and a particle but are captured rather in proportion to the first power of the diameters of a micelle and a particle or less than the first power. This indicates that the form of e would be Case A or Case B. In this discussion, therefore, Case A will be used as the form of e for simplicity. [Pg.130]

Inhibitors like this are said to have a stoichiometric factor of 2 that is, 2 radicals are stopped per molecule of inhibitor.) We can calculate the fraction of the peroxyl radicals that undergo reaction 7 and continue the chain versus those that react with tocopherol, Equation 16, ultimately to terminate the autoxidation. In this calculation (Equation 18), the concentration of peroxyl radicals cancels out (21). We will use the concentration of tocopherol that we use in our micelle studies and the value of k.. that we measure for tocopherol (Sit). in... [Pg.94]


See other pages where Micelles radical chain reactions is mentioned: [Pg.380]    [Pg.2967]    [Pg.714]    [Pg.395]    [Pg.348]    [Pg.412]    [Pg.78]    [Pg.89]    [Pg.216]    [Pg.139]    [Pg.137]    [Pg.183]    [Pg.292]    [Pg.53]    [Pg.401]    [Pg.346]    [Pg.153]    [Pg.156]    [Pg.158]    [Pg.130]    [Pg.189]    [Pg.357]    [Pg.108]    [Pg.37]    [Pg.39]    [Pg.468]    [Pg.660]    [Pg.232]    [Pg.569]    [Pg.880]    [Pg.95]   
See also in sourсe #XX -- [ Pg.594 ]




SEARCH



Chain radical

Micelles reactions

Radical chain reactions

Radicals radical chain reaction

© 2024 chempedia.info