Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micelle electrokinetic capillary chromatography

Micelle electrokinetic capillary chromatography is often employed to separate nonpolar compounds. The addition of organic solvent to the sample, especially with large-sample injection, decreases the peak height as well as the resolution. [Pg.1395]

Kovat s retention index (p. 575) liquid-solid adsorption chromatography (p. 590) longitudinal diffusion (p. 560) loop injector (p. 584) mass spectrum (p. 571) mass transfer (p. 561) micellar electrokinetic capillary chromatography (p. 606) micelle (p. 606) mobile phase (p. 546) normal-phase chromatography (p. 580) on-column injection (p. 568) open tubular column (p. 564) packed column (p. 564) peak capacity (p. 554)... [Pg.609]

A., Testa, B. The relative partitioning of neutral and ionised compounds in sodium dodecyl sulfate micelles measured by micellar electrokinetic capillary chromatography. Eur. J. Pharm. Sci. 2002, 75, 225-234. [Pg.354]

Clothier, Jr., J. G. and Tomellini, S. A., Chiral separation of veraprimil and related componds using micellar electrokinetic capillary chromatography with mixed micells of bile salt and polyoxyethylene ethers,. Chromatogr. A, 712, 179,1996. [Pg.424]

In order to separate neutral compounds, Terabe et al. [13] added surfactants to the buffer electrolyte. Above their critical micellar concentration (cmc), these surfactants form micelles in the aqueous solution of the buffer electrolyte. The technique is then called Micellar electrokinetic capillary chromatography, abbreviated as MECC or MEKC. Micelles are dynamic structures consisting of aggregates of surfactant molecules. They are highly hydrophobic in their inner structure and hydrophilic at the outer part. The micelles are usually... [Pg.613]

Kang, J. W., De Reymaeker, G., Van Schepdael, A., Roets, E., and Hoogmartens, J. (2001). Analysis of bacitracin by micellar electrokinetic capillary chromatography with mixed micelle in acidic solution. Electrophoresis 22, 1356-1362. [Pg.311]

Micellar electrokinetic capillary chromatography (MECC), in contrast to capillary electrophoresis (CE) and capillary zone electrophoresis (CZE), is useful for the separation of neutral and partially charged species [266,267]. In MECC, a surfactant, usually sodium dodecyl sulfate (SDS), is added to the buffer solution above its critical micellar concentration to form micelles. Although SDS is certainly the most popular anionic surfactant in MECC, other surfactants such as bile salts have proved to be very effective in separating nonpolar analytes that could not be resolved using SDS [268]. [Pg.166]

Micellar electrokinetic chromatography (MEKC) is a modality of liquid chromatography having a surfactant molecule in the form of a micelle, which was introduced by Terabe et al. in 1984 [38]. The formation and separation occur in the capillary and, hence, it is also called micellar electrokinetic capillary chromatography (MECC). This modality is useful for some specific molecules having solubilities in micelles and, therefore, utilized for the separation and identification of such compounds with great efficiency, reproducibility, and low levels of detections. The most commonly used compounds for micelle formation are sodium dodecyl sulfate (SDS), sodium tetradecyl sulfate, sodium decanesulfonate, sodium /V-lauryl-/V-mcthyllauratc, sodium... [Pg.181]

Many pharmaceutical preparations contain multiple components with a wide array of physico-chemical properties. Although CZE is a very effective means of separation for ionic species, an additional selectivity factor is required to discriminate neutral analytes in CE. Terabe first introduced the concept of micellar electrokinetic capillary chromatography (MEKC) in which ionic surfactants were included in the running buffer at a concentration above the critical micelle concentration (CMC) [17], Micelles, which have hydrophobic interiors and anionic exteriors, serve as a pseudostation-ary phase, which is pumped electrophoretically. Separations are based on the differential association of analytes with the micelle. Interactions between the analyte and micelles may be due to any one or a combination of the following electrostatic interactions, hydrogen bonding, and/or hydro-phobic interactions. The applicability of MEKC is limited in some cases to small molecules and peptides due to the physical size of macromolecules... [Pg.111]

The first and most often encountered separation mechanism in CE is based on mobility differences of the analytes in an electric field these differences are dependent on the size and charge-to-mass ratio of the analyte ion. Analyte ions are separated into distinct zones when the mobility of one analyte differs sufficiently from the mobility of the next. This mechanism is exemplified by capillary zone electrophoresis (CZE) which is the simplest CE mode. A number of other recognized CE modes are variations of CZE. These are micellar electrokinetic capillary chromatography (MECC), capillary gel electrophoresis (CGE), capillary electrochromatography (CEC), and chiral CE. In MECC the separation is similar to CZE, but an additional mechanism is in effect that is based on differences in the partition coefficients of the solutes between the buffer and micelles present in the buffer. In CGE the additional mechanism is based on solute size, as the capillary is filled with a gel or a polymer network that inhibits the passage of larger molecules. In chiral CE the additional separation mechanism is based on chiral selectivity. Finally, in CEC the capillary is packed with a stationary phase that can retain solutes on basis of the same distribution equilibria found in chromatography. [Pg.154]

Micellar electrokinetic capillary chromatography (MECC) is a mode of CE similar to CZE, in which surfactants (micelles) are added to the buffer system. Micellar solutions can be used to solubilize hydrophobic compounds that would otherwise be insoluble in water. In MECC the micelles are used to provide a reversed-phase character to the separation mechanism. Although MECC was originally developed for the separation of neutral species by capillary electrophoresis, it has also been shown to enhance resolution in the analysis of a variety of charged species.16... [Pg.161]

Enormous advances and growth in the use of ordered media (that is, surfactant normal and reversed micelles, surfactant vesicles, and cyclodextrins) have occurred in the past decade, particularly in their chromatographic applications. New techniques developed in this field include micellar liquid chromatography, micellar-enhanced ultrafiltration, micellar electrokinetic capillary chromatography, and extraction of bioproducts with reversed micelles techniques previously developed include cyclodextrins as stationary and mobile-phase components in chromatography. The symposium upon which this book was based was the first major symposium devoted to this topic and was organized to present the current state of the art in this rapidly expanding field. [Pg.1]

The incorporation of micelles in the mobile phase in capillary zone electroporesis permits the efficient separation of a variety of neutral compounds. Efficiencies in excess of 100,000 plates/m are routinely attained. The mass transport processes which are important in micellar electrokinetic capillary chromatography are described, along with the technique. The technique is particularly useful for biological separations. Preliminary data and discussion related to column selectivity and efficiency are presented. [Pg.142]

Mechref Y, Smith JT, El Rassi Z. Micellar electrokinetic capillary chromatography with in situ charged micelles. VII. Expanding the utility of alkylglycoside-borate micelles to acidic and neutral pH for capillary electrophoresis of dansyl amino acids and herbicides. J Liq Chromatogr 1995 18 3769. [Pg.40]

Micelles and cyclodextrins are the most common reagents used for this technique. Micellar electrokinetic capillary chromatography (MECC or MEKC) is generally used for the separation of small molecules [6], Sodium dodecyl sulfate at concentrations from 20 to 150 mM in conjunction with 20 mM borate buffer (pH 9.3) or phosphate buffer (pH 7.0) represent the most common operating conditions. The mechanism of separation is related to reversed-phase liquid chromatography, at least for neutral solutes. Organic solvents such as 5-20% methanol or acetonitrile are useful to modify selectivity when there is too much retention in the system. Alternative surfactants such as bile salts (sodium cholate), cationic surfactants (cetyltrimethy-lammonium bromide), nonionic surfactants (poly-oxyethylene-23-lauryl ether), and alkyl glucosides can be used as well. [Pg.248]

Micellar Electrokinetic Capillary Chromatography. Surfactants that form micelles in solution are added to the buffer in the capillary. When the solute is injected, it partitions itself between the buffer and the micelle. Migration of the solute depends on the amount of time it spends in the micelle versus the time it spends in the buffer. Therefore, the separation of analytes occurs due to differences in the partition coefficient between the two phases, much like in a chromatographic process. [Pg.290]

Micellar electrokinetic capillary chromatography uses a totally aqueous buffer into which a surfactant in excess of its critical micelle concentration is introduced [18,35—37]. This approach makes use of solute separation via partitioning into... [Pg.252]

The more hydrophobic neutral molecules tend to penetrate the micelle to the hydrophobic center and associate for an equilibrium amount of time. As a result, they are carried along for a short time with the micelle toward the anode. This large molecule lags further behind the main bulk of the system. Different neutral molecules penetrate and associate for various lengths of time. This means that neutral molecules can become separated. This technique has been called micellar electrokinetic capillary chromatography (MECC), Figure 31-8. [Pg.366]

Micellar electrokinetic capillary chromatography (MEKC or MECC) is the mode employed for separating of neutral analytes by CE. In CZE, neutral molecules migrate together as one unresolved peak. MEKC can also improve resolution for cation and anion separations too. It normally utilises a bare fused silica capillary. The electrolyte contains micelles which have a polar, negatively charged exterior and a nonpolar interior. The... [Pg.96]


See other pages where Micelle electrokinetic capillary chromatography is mentioned: [Pg.237]    [Pg.327]    [Pg.237]    [Pg.327]    [Pg.775]    [Pg.260]    [Pg.179]    [Pg.106]    [Pg.145]    [Pg.35]    [Pg.191]    [Pg.195]    [Pg.455]    [Pg.179]    [Pg.14]    [Pg.46]    [Pg.34]    [Pg.359]    [Pg.173]    [Pg.176]    [Pg.224]    [Pg.258]    [Pg.105]    [Pg.205]    [Pg.695]    [Pg.1012]    [Pg.376]    [Pg.93]    [Pg.358]   


SEARCH



Capillary electrokinetic

Capillary electrokinetic chromatography

Chromatography capillary

Chromatography, electrokinetic

Electrokinetic

Electrokinetics)

Micelle chromatography

Miceller electrokinetic chromatography

© 2024 chempedia.info