Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

METHYLTHIAZOLE

Amino-4 -methylthiazole slowly decomposes on storage to a red viscous mass. It can be stored as the nitrate, which is readily deposited as pink crystals when dilute nitric acid is added to a cold ethanolic solution of the thiazole. The nitrate can be recrystallised from ethanol, although a faint pink colour persists. Alternatively, water can be added dropwise to a boiling suspension of the nitrate in acetone until the solution is just clear charcoal is now added and the solution, when boiled for a short time, filtered and cooled, deposits the colourless crystalline nitrate, m.p. 192-194° (immersed at 185°). The thiazole can be regenerated by decomposing the nitrate with aqueous sodium hydroxide, and extracting the free base with ether as before. [Pg.306]

Determination of structural features. The ultraviolet spectrum has been of value in the determination of the structure of several vitamins. Thus the presence of an a-naphthoquinone system in vitamin K was first detected by this means. Also the 4-methylthiazole and the 2 5-dimethyl-6-aminopyridine system was first identified in vitamin Bj (thiamine), a- and /3-Ionones can be distinguished since the former contains two conjugated chromophores and the latter three conjugated chromophores. [Pg.1149]

This reaction, thoroughly studied for 2-aminopyridine (14, 15), has received less attention in the case of the thiazole nucleus. 2-Amino-4-methylthiazole is formed when 4-methylthiazole is heated with sodium amide for 15 hr at 150°C (16). This reaction was used to identify 2-amino-4-butylthiazok (17). [Pg.12]

The mass spectra of 2-aminothiazole and 2-amino-4-methylthiazole are characterized by the following peaks (136). [Pg.27]

During the course of biochemical studies (138). the mass spectrum of 2-acetamidothiazole was recorded its main peaks are the molecular ion (m/e= 142, relative intensity = 26%) and fragments 100 (100), 58 (2. 5), and 43 (39). For 2-acetamido-5-bromothiazole the main peak results again from the loss of C2H2O by the molecular ion. 2-AcetyIacet-amido-4-methylthiazole (2S) exhibits significant loss of from the... [Pg.29]

With the more acidic 2-acetamido-4-R-thiazoles. using the weaker base NaOH as condensation agent, a mixture of ring (45) and exocyclic N-alkylation (46) may be observed (Scheme 33) (121). Reaction of 2-acetamido-4-methylthiazole in alcoholic sodium ethoxide solution with a variety of alkylating agents has been reported (40-44). [Pg.35]

Zugravescu et al. (263) showed that ethyl chloroformate reacts on the exocyclic nitrogen of 2-amino-4-methylthiazole to yield the carbamate (101) (Scheme 70) (see also Refs. 264 and 265). With an excess of chloroformate (2 moles for one of the thiazole) under Schotten-Bauman conditions the jV.A -dicarbamate of 2-imino-4-methylthiazoline (102) is obtained (263),... [Pg.51]

Maleic anhydride condenses with 2-aminothiazole-4-carboxylic acid giving the raaleimide 107 (269) another report claims, however, that the reaction of 2-amino-4-methylthiazole with this anhydride gives the N-substituted maleamic acid (108) (Scheme 73) (270). [Pg.52]

Takatori (274) formylated 2-amino-4-methylthiazole with formic acid. When NHj is bubbled for 6 hr into a mixture of 2-amino-4-methyl-thiazole and propionic acid at 100°C, 2-propionamido-4-methylthiazole is obtained (275). [Pg.53]

Vollmann found that the reaction between l-imino-3-amino isoin dolenine (124) and 2-amino-4-methylthiazole is catalyzed by ammonium chloride and involves the exocyclic nitrogen (285). This reaction (Scheme 82) was later used to prepare dyes (286). [Pg.56]

Picryl halides react with 2-amino-4-methylthiazole. Again, the exocyclic nitrogen is the reactive center (288). and the product formed (128) is... [Pg.56]

Amino-4-methylthiazole also gives a complex with Hg(II) that has been used in a gravimetric determination of this metal (366). [Pg.70]

When 2-amino-4-methylthiazole is nitrated under mild conditions, 2-nitramino-4-methylthiazole (180) is isolated (Scheme 114) (16, 194. 374). [Pg.72]

In fuming sulfuric acid (20% oleum) 2 aminothiazole (16. 27. 375. 389) and 2-amino-4-methylthiazole (374. 390) are sulfonated in the 5-position. When this position is substituted as in 2-amino-5-methyl-thiazole (27, 391) very small amounts of 4-sulfonation occur. [Pg.75]

Attempts to prepare the diprOpylamino-5-sulfonic acid by sulfonation in oleum failed (385). With 2-piperidino-4-methylthiazole Ochiai reports cleavage of the 2-piperidino ring (391). [Pg.75]

The halogen in the 5-position of 2-aminothiazoles is usually reactive and is used for further reaction (see Chapter V). The reaction may take place in the same medium as thiocyanation (437-440), rhodanation (441). or reaction with NaNO (435). Similarly, a mixture of 2-amino-4-methylthiazole and thiourea in H2O yields 5,5 -thiobis(2-amino-4-methyDthiazole (202) after addition of iodine (Scheme 128) (442). [Pg.79]

Acetamido-4-methylthiazole does not react with acetyl chloride in the Friedel-Crafts reaction (172. 407, 449). [Pg.80]

Amino-4-phenylthiazole when heated with Raney Ni is reported to yield acetophenone (469). In the course of a general study on reductive cleavage in heterocyclic systems Hoff et al. studied the reaction of 2-amino-4-methylthiazole with Na in liquid ammonia. Two equivalents of Na are necessary to obtain a mixture of 4-methyl-3-thiazoline (240) and... [Pg.86]

The sulfur atom of the thiocarbonyl group is a good nucleophile, and reaction between benzyl bromide and l-(2-thiazolyl)thiourea yields the isothiouronium salt (496). The sulfur atom may also be engaged in a chelate, as exemplified by the Cu chelate of 2-thioureido-4-methylthiazole (491). These chelates with metal ions were thoroughly studied in acidic, neutral, and alkaline media for 66 metal ions in order to define their analytical use. They are formed in the molar ratio of 1 2 for metal II compounds (498). [Pg.95]

Diazo coupling involves the N exocyclic atom of the diazonium salt, which acts as an electrophilic center. The diazonium salts of thiazoles couple with a-naphthol (605). 2-nitroresorcinol (606), pyrocatechol (607-609), 2.6-dihydroxy 4-methyl-5-cyanopyridine (610). and other heteroaromatic compounds (404. 611) (Scheme 188). The rates of coupling between 2-diazothicizolium salts and 2-naphthol-3.6-disulfonic acid were measured spectrophotometrically and found to be slower than that of 2-diazopyridinium salts but faster than that of benzene diazonium salts (561 i. The bis-diazonium salt of bis(2-amino-4-methylthiazole) couples with /3-naphthol to give 333 (Scheme 189) (612). The products obtained from the diazo coupling are usuallv highly colored (234. 338. 339. 613-616). [Pg.112]

Perfused rat liver rapidly converts 4-m thyI-5-/3-chloroethy]thiazole to 2-hydroxy -4-methylthiazol-5-y) acetic acid (40. 41). Finally, tw o new human metabolites of chlormethiazole have been isolated and identified by mass spectra as 2-hydroxy-4-methyl-5-/S-chloroethylthiazole and 2-hydroxy-4-methyl-5-ethylthiazole (42). [Pg.375]

Very small amounts of 2-hydroxy-4-methylthiazole-5-acetic acid were determined by chromatographic techniques in bacterial culture medium (41). [Pg.390]

Recently, Hoff and Blok report the reductive ring opening of 4-methyl-A-4-thiazoline-2-thione anion (80) (Scheme 39) (204) when treated with two equivalents of sodium in liquid amonia. Treatment of the prop-enethiolate (83) by 4N aqueous HCl affords 4-methylthiazole. The... [Pg.397]

When unsubstituted, C-5 reacts with electrophilic reagents. Thus phosphorus pentachloride chlorinates the ring (36, 235). A hydroxy group in the 2-position activates the ring towards this reaction. 4-Methylthiazole does not react with bromine in chloroform (201, 236), whereas under the same conditions the 2-hydroxy analog reacts (55. 237-239. 557). Activation of C-5 works also for sulfonation (201. 236), nitration (201. 236. 237), Friede 1-Crafts reactions (201, 236, 237, 240-242), and acylation (243). However, iodination fails (201. 236). and the Gatterman or Reimer-Tieman reactions yield only small amounts of 4-methyl-5-carboxy-A-4-thiazoline-2-one. Recent kinetic investigations show that 2-thiazolones are nitrated via a free base mechanism. A 2-oxo substituent increases the rate of nitration at the 5-position by a factor of 9 log... [Pg.402]

Methylthio- and 2-ethylthio-4-methylthiazoles undergo reductive ring opening when treated by sodium in liquid ammonia (204). The first step of this reaction consists of the formation of the A-4-thiazoline anion (80). The next steps are analogous to those given for 80a to 83. [Pg.406]

Thus reduction of the 5-thiocyanato group of 151 by zinc (333, 360, 361) or aqueous sodium sulfide (348. 362), hydrolysis of the thiouronium group (7, 363, 364), and deacetylation of the 5-acetylthiothiazole with cold piperidine (365) have been performed to yield the 5-mercapto-thiazole (Scheme 78). It must be pointed out that depending on the experimental conditions, bis(5-thiazolyl(sulfide may be observed as a byproduct (363, 365). Thus 5-amino-4-methylthiazole (152) treated with... [Pg.416]

For example, when N-ethylrhodanine is condensed with (quino)ine-4)(4-methylthiazole-2)trimethine cyanine or (pyridine-2)(4-methylthia-zole-2)trimethine cyanine, the yields obtained for neutrothiazolo-dimethine dye are 25 and 75%, respectively (53). [Pg.62]

The easier elimination of pyridine compared to quinoline-4 may be related to the pK value of 4-methylthiazole, which is between those of lepidine and 2-picoline (25. 55). This reaction explains also why a neutrodimethine cyanine is obtained with such good yields when reacting together a quaternary salt, ketomethylene, and o-ester in a basic medium. As the reaction proceeds, the trimethine cyanine is attacked by the ketomethylene. The resulting 2-methyl quaternary salt is transformed into trimethine cyanine, consuming the totality of the ketomethylene (1, p. 512 661). The mesosubstituted neutrodimethine cyanine is practically pure. [Pg.62]

R. Mellon (19) but using anhydrous reagents. He obtained an oil that reacted exothermically with hydroxylamine (oxime of m.p. 135°) and that isomerized to 2-oxy-4-methylthiazole (14) upon heating with diluted hydrochloric acid. The thiazolic nature of oxymethylthiazole was clearly demonstrated by its reduction by zinc powder distillation into 4-methylthiazole (23), the first free thiazole ever described. [Pg.11]

Under appropriate conditions 2-amino-4-alkylthiazoles are alkylated in the 5-position 2-acetylamino-4-methylthiazole reacts with dimethyl-amine and formaldehyde to afford the corresponding Mannich base (113) (372). 2-Amino-4-methyl-thiazole is alkylated in the 5-position by heat-... [Pg.103]

Hydroxy-4-methylthiazole failed to react when submitted to Friedel-Crafts benzoylation conditions (349) on the other hand, it reacted normally in Gattermann and in Reimer-Tiemann formylation reactions, affording the 5-formyl derivative (348). 4-Methylthiazole is insufficiently activated and fails to react under the same conditions. 2,4-Dimethylthiazole undergoes perfluoroalkylation when heated at 200° for 8 hr in a sealed tube with perfluoropropyl iodide and sodium acetate (116) (358). [Pg.103]


See other pages where METHYLTHIAZOLE is mentioned: [Pg.306]    [Pg.27]    [Pg.33]    [Pg.70]    [Pg.87]    [Pg.102]    [Pg.398]    [Pg.12]    [Pg.86]    [Pg.103]    [Pg.105]   
See also in sourсe #XX -- [ Pg.132 ]

See also in sourсe #XX -- [ Pg.99 ]

See also in sourсe #XX -- [ Pg.99 ]




SEARCH



2, -Methylthiazole, irradiation

2-Acetyl-5-methylthiazole

2-Amino-4-methylthiazole

2-Amino-4-methylthiazole nitrate

2-Amino-4-methylthiazole preparation

2-Bromo-4-methylthiazole, reaction with

2-Chloro-5-methylthiazole, reaction with

2-Lithio-4-methylthiazole

2-Methylthiazole, bromination

3-Hydroxy-4-methylthiazol-2 -thione

4- Methylthiazol

4- Methylthiazol

4-Methylthiazole-3-oxide

5- -4-methylthiazoles, preparation

5- Amino-4-carboxyethyl-2-methylthiazole

5-Amino-4-methylthiazole, reaction with

C4H5NS 2-Methylthiazole

Ethyl 2-methylthiazole-4-carboxylate

Lithium 4-methylthiazolate, reaction with

Methylthiazoles

Methylthiazoles, basicity

Methylthiazoles, basicity proton

Thiazole and 4-Methylthiazole

© 2024 chempedia.info