Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methylene olefins

Formation of cyclic enol ethers by carbonyl methylenation—olefin metathesis. [Pg.478]

Figure 4b shows the development of other peaks which are responding to sequence-related information in the growing chain. The peak at 114.21 ppm is due to the methylene olefin carbon of a 1,2 unit in the chain. Of special significance is the resonance peak at 62.80 ppm which is the same as that observed in Figure 3 as a result of heating at 70°C. Thus, even at room temperature, some "metalation" is taking place in the presence of excess n-BuLi. [Pg.374]

Formation of cydic enol ethers by carbonyl methylenation— olefin metathesis. [Pg.478]

Epoxides. The reaction of carbonyl compounds with methylene bromide (iodide) and magnesium amalgam gives methylenic olefins (2, 274) ... [Pg.306]

For a methylene-olefin system, both the addition and abstraction reaction of triplet methylene should be taken into account. The photolysis of ketene and diazomethane in the presence of trani-2-butene has been studied in some detail. The fraction of triplet methylene formed can be determined by taking the ratio of the sum of triplet products to total products, where... [Pg.395]

Scheme 15. Synthesis of complex polyether frameworks by tandem methylenation/olefin metathesis. (Nicolaou et al., 1996p... Scheme 15. Synthesis of complex polyether frameworks by tandem methylenation/olefin metathesis. (Nicolaou et al., 1996p...
Scheme 1.12 The methylenation/olefination sequence of Singh and Ghosh that forms... Scheme 1.12 The methylenation/olefination sequence of Singh and Ghosh that forms...
Yang, N.C. and Marolewski, T.A., The addition of halomethylene to 1,2-dimethylq clobutene, a methylene-olefin reaction involving a novel rearrangement,/. Am. Chem. Soc., 90, 5644,1968. [Pg.61]

This oxidation proceeds readily if the methylene group is activated by linkage to (a) a carbonyl group, (b) an aromatic ring (c) an olefine link also activates adjacent CH2 and CH groups. [Pg.147]

A -Bromosuccinimide (prepared by the action of bromine on succinimide at o in the presence of sodium hydroxide) is a valuable specific reagent for brominating olefines in the a-methylene position to the double bond without simultaneously adding bromine to this bond. For example, if A -bromosuccini-mide is represented by (C4H40t)NBr —... [Pg.177]

The Peterson reaction has two more advantages over the Wittig reaction 1. it is sometimes less vulnerable to sterical hindrance, and 2. groups, which are susceptible to nucleophilic substitution, are not attacked by silylated carbanions. The introduction of a methylene group into a sterically hindered ketone (R.K. Boeckman, Jr., 1973) and the syntheses of olefins with sulfur, selenium, silicon, or tin substituents (D. Seebach, 1973 B.T. Grdbel, 1974, 1977) illustrate useful applications. The reaction is, however, more limited and time consuming than the Wittig reaction, since metallated silicon derivatives are difficult to synthesize and their reactions are rarely stereoselective (T.H. Chan, 1974 ... [Pg.33]

Versatile [3 + 2]-cydoaddition pathways to five-membered carbocydes involve the trimethylenemethane (= 2-methylene-propanediyl) synthon (B.M. Trost, 1986). Palladium(0)-induced 1,3-elimination at suitable reagents generates a reactive n -2-methylene-l,3-propa-nediyl complex which reacts highly diastereoselectively with electron-deficient olefins. The resulting methylenecyclopentanes are easily modified, e. g., by ozonolysis, hydroboration etc., and thus a large variety of interesting cyclopcntane derivatives is accessible. [Pg.84]

Polar solvents shift the keto enol equilibrium toward the enol form (174b). Thus the NMR spectrum in DMSO of 2-phenyl-A-2-thiazoline-4-one is composed of three main signals +10.7 ppm (enolic proton). 7.7 ppm (aromatic protons), and 6.2 ppm (olefinic proton) associated with the enol form and a small signal associated with less than 10% of the keto form. In acetone, equal amounts of keto and enol forms were found (104). In general, a-methylene protons of keto forms appear at approximately 3.5 to 4.3 ppm as an AB spectra or a singlet (386, 419). A coupling constant, Jab - 15.5 Hz, has been reported for 2-[(S-carboxymethyl)thioimidyl]-A-2-thiazoline-4-one 175 (Scheme 92) (419). This high J b value could be of some help in the discussion on the structure of 178 (p. 423). [Pg.422]

ALKANOLAMNES - ALKANOLAMINES FROM OLEFIN OXIDES AND AL ONIA] (Vol 2) Nitrilotris(methylene)tris-phosphomc acid [6419-19-8]... [Pg.677]

Michael condensations are catalyzed by alkaU alkoxides, tertiary amines, and quaternary bases and salts. Active methylene compounds and aUphatic nitro compounds add to form P-substituted propionates. These addition reactions are frequendy reversible at high temperatures. Exceptions are the tertiary nitro adducts which are converted to olefins at elevated temperatures (24). [Pg.151]

Diketene is used to C-acetoacetylate aromatic compounds in the presence of aluminum trichloride [7446-70-0]. Benzene [71-43-2] and diketene react to produce acetoacet5lben2ene [93-91-4]. Pyrrole [109-97-7] and diketene react to produce 2-acetoacet5lpyrrole [22441-25-4]. The C-acetoacetyl derivatives of active methylene compounds such as cyanoacetates, malonodinitrile [109-77-3] and Meldmm s acid [2033-24-1], and olefins can be prepared using diketene. [Pg.478]

PMMA is not affected by most inorganic solutions, mineral oils, animal oils, low concentrations of alcohols paraffins, olefins, amines, alkyl monohahdes and ahphatic hydrocarbons and higher esters, ie, >10 carbon atoms. However, PMMA is attacked by lower esters, eg, ethyl acetate, isopropyl acetate aromatic hydrocarbons, eg, benzene, toluene, xylene phenols, eg, cresol, carboHc acid aryl hahdes, eg, chlorobenzene, bromobenzene ahphatic acids, eg, butyric acid, acetic acid alkyl polyhaHdes, eg, ethylene dichloride, methylene chloride high concentrations of alcohols, eg, methanol, ethanol 2-propanol and high concentrations of alkahes and oxidizing agents. [Pg.262]

Apparently the alkoxy radical, R O , abstracts a hydrogen from the substrate, H, and the resulting radical, R" , is oxidized by Cu " (one-electron transfer) to form a carbonium ion that reacts with the carboxylate ion, RCO - The overall process is a chain reaction in which copper ion cycles between + 1 and +2 oxidation states. Suitable substrates include olefins, alcohols, mercaptans, ethers, dienes, sulfides, amines, amides, and various active methylene compounds (44). This reaction can also be used with tert-huty peroxycarbamates to introduce carbamoyloxy groups to these substrates (243). [Pg.131]

Carbene Reactions. The best procedure for preparing dihalocarbene adducts of olefins consists in stirring a haloform—methylene chloride solution with an excess of concentrated aqueous caustic soda in the presence of hen 2y1triethy1 amm onium chloride. Even stericahy hindered and electronically deactivated compounds give excellent yields (32). Mixed dihalocarbenes, CXY (X,Y = E, Cl, Br, I), except for CE2, can be prepared. [Pg.189]

Cyclopentadiene contains conjugated double bonds and an active methylene group and can thus undergo a Diels-Alder diene addition reaction with almost any unsaturated compound, eg, olefins, acetylene, maleic anhydride, etc. The number of its derivatives is extensive only the reactions and derivatives considered most important are discussed. [Pg.429]

Synthesis of terminal olefine from ketones or esters via a Ti methylene transfer reagent. [Pg.380]

Dimethyl ketals and enol ethers are stable to the conditions of oxime formation (hydroxylamine acetate or hydroxylamine hydrochloride-pyridine). Thioketals and hemithioketals are cleaved to the parent ketones by cadmium carbonate and mercuric chloride. Desulfurization of thioketals with Raney nickel leads to the corresponding methylene compounds, while thioenol ethers give the corresponding olefin. In contrast, desulfurization of hemithioketals regenerates the parent ketone. ... [Pg.385]

In 1958 Simmons and Smith described a new and general synthesis of cyclopropanes by treatment of olefins with a reagent prepared from methylene iodide and a zinc-copper couple in ether solution. [Pg.107]

Fluonnated ylides have also been prepared in such a way that fluonne is incorporated at the carhon P to the carbamonic carbon Vanous fluoroalkyl iodides were heated with tnphenylphosphine in the absence of solvent to form the necessary phosphonium salts Direct deprotonation with butyUithium or hthium dusopropy-lamide did not lead to yhde formation, rather, deprotonation was accomparued by loss of fluonde ion Flowever deprotonation with hydrated potassium carbonate in thoxane was successful and resulted in fluoroolefin yields of45-S0% [59] (equation 54) P-Fluorinated ylides may also be prepared by the reaction of an isopropyli-denetnphenylphosphine yhde with a perfluoroalkanoyl anhydnde The intermediate acyl phosphonium salt can undergo further reaction with methylene tnphenylphosphorane and phenyUithium to form a new yhde, which can then be used in a Wittig olefination procedure [60] (equation 55) or can react with a nucleophile [6/j such as an acetyhde to form a fluonnated enyne [62] (equation 56)... [Pg.591]

Epoxidation of aldehydes and ketones is the most profound utility of the Corey-Chaykovsky reaction. As noted in section 1.1.1, for an a,P-unsaturated carbonyl compound, 1 adds preferentially to the olefin to provide the cyclopropane derivative. On the other hand, the more reactive 2 generally undergoes the methylene transfer to the carbonyl, giving rise to the corresponding epoxide. For instance, treatment of P-ionone (26) with 2, derived from trimethylsulfonium chloride and NaOH in the presence of a phase-transfer catalyst Et4BnNCl, gave rise to vinyl epoxide 27 exclusively. ... [Pg.4]

The Nenitzescu process is presumed to involve an internal oxidation-reduction sequence. Since electron transfer processes, characterized by deep burgundy colored reaction mixtures, may be an important mechanistic aspect, the outcome should be sensitive to the reaction medium. Many solvents have been employed in the Nenitzescu reaction including acetone, methanol, ethanol, benzene, methylene chloride, chloroform, and ethylene chloride however, acetic acid and nitromethane are the most effective solvents for the process. The utility of acetic acid is likely the result of its ability to isomerize the olefinic intermediate (9) to the isomeric (10) capable of providing 5-hydroxyindole derivatives. The reaction of benzoquinone 4 with ethyl 3-aminocinnamate 35 illustrates this effect. ... [Pg.150]


See other pages where Methylene olefins is mentioned: [Pg.400]    [Pg.400]    [Pg.31]    [Pg.109]    [Pg.119]    [Pg.297]    [Pg.522]    [Pg.117]    [Pg.493]    [Pg.183]    [Pg.342]    [Pg.543]    [Pg.469]    [Pg.205]    [Pg.126]    [Pg.160]    [Pg.211]    [Pg.447]    [Pg.452]    [Pg.61]    [Pg.113]    [Pg.2]    [Pg.60]    [Pg.239]   
See also in sourсe #XX -- [ Pg.2 , Pg.33 , Pg.34 , Pg.35 ]




SEARCH



Methylenation reactions, Peterson olefination

Methylenation, Wittig olefination

Olefinated Wittig methylenation, synthesis

Olefins Tebbe methylenation

Olefins methylene homologations

© 2024 chempedia.info