Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl oxalate, reactions

Only a few of such reactions of these rings have been reported since CHEC-II(1996). However, Weaver and Tennant <1999TL8157, 2000TL9319> have demonstrated that imidazo[4,5-f]isoxazoles such as 19 undergo thermally driven reactions with acetylenic diesters (such as 22) to yield, rather than the expected bridged bicyclic compound 20 or the pyridine Woxide 21, the 2-pyrrol-2-ylimidazole 24 which the authors suggest proceeds via loss of a methyl oxalate unit. The proposed pathway is outlined in Scheme 1. [Pg.166]

In order to activate the 21 position to halogenation, it is hrst converted to an oxalate. Condensation of the triketone with ethyl oxalate in the presence of alkoxide proceeds preferentially at the 21 position to give (12-2) due to the well-known enhanced reactivity of methyl ketones. Reaction of the crude sodium enolate with bromine leads to the dibromide (12-3), the oxalate moiety being cleaved under the reaction conditions. The Favorskii rearrangement is then used to, in effect, oxidize the 17 position so as to provide a site for the future hydroxyl group. Thus, treatment of (12-3) with an excess of sodium methoxide hrst provides an anion at the 17 position (12-4). This then cyclizes to the transient cyclopropanone (12-5)... [Pg.171]

Electrolysis of a methanol solution of methyl oxalate with ethylene under pressure yielded 70-90% of the dimethyl esters of succinic, adipic, suberic, and sebacic acids. Decrease in the ethylene pressure or increase of the current density led to a decrease in the higher esters in the product mixture [241]. The influence of mechanism and kinetic data on yields and selectivities in addition reactions of anodically generated radicals to olefins has been calculated and predictions have been tested in preparative electrolyses [244]. [Pg.950]

The synthesis of the sterically hindered 2-ketoesters succeeded in a simple fashion and in excellent yields by the esterification of ethyl oxalyl chloride with the lithium salt of 2,6-di-f rt-butyl-4-methoxyphenol followed by the chemose-lective nucleophilic addition of methyl or ethyl Grignard reagents to the unsym-metrical ethyl aryl oxalate. Reaction with (S)-l-amino-2-(methoxymethyl)pyrro-... [Pg.73]

One route to o-nitrobenzyl ketones is by acylation of carbon nucleophiles by o-nitrophenylacetyl chloride. This reaction has been applied to such nucleophiles as diethyl malonatc[l], methyl acetoacetate[2], Meldrum s acid[3] and enamines[4]. The procedure given below for ethyl indole-2-acetate is a good example of this methodology. Acylation of u-nitrobenzyl anions, as illustrated by the reaction with diethyl oxalate in the classic Reissert procedure for preparing indolc-2-carboxylate esters[5], is another route to o-nitrobenzyl ketones. The o-nitrophenyl enamines generated in the first step of the Leimgruber-Batcho synthesis (see Section 2.1) are also potential substrates for C-acylation[6,7], Deformylation and reduction leads to 2-sub-stituted indoles. [Pg.14]

An Organic Syntheses preparation of 4-nitroindole may involve a related reaction. The condensation occurs in the presence of diethyl oxalate which may function by condensation at the methyl group. If this is the case, it must subsequently be lost by deacylation[17]. [Pg.29]

In addition to the Hquid-phase -butyl nitrite (BN) process, UBE Industries has estabHshed an industrial gas-phase process using methyl nitrite (50—52). The oudine of the process is described in Eigure 4 (52). This gas-phase process is operated under lower reaction pressure (at atmospheric pressure up to 490 kPa = 71 psi) and is more economical than the Hquid-phase process because of the foUowing reasons owing to the low pressure operation, the consumption of electricity is largely reduced (—60%) dimethyl oxalate (DMO) formation and the methyl nitrite (MN) regeneration reaction are mn... [Pg.459]

In acidic solution, the degradation results in the formation of furfural, furfuryl alcohol, 2-furoic acid, 3-hydroxyfurfural, furoin, 2-methyl-3,8-dihydroxychroman, ethylglyoxal, and several condensation products (36). Many metals, especially copper, cataly2e the oxidation of L-ascorbic acid. Oxalic acid and copper form a chelate complex which prevents the ascorbic acid-copper-complex formation and therefore oxalic acid inhibits effectively the oxidation of L-ascorbic acid. L-Ascorbic acid can also be stabilized with metaphosphoric acid, amino acids, 8-hydroxyquinoline, glycols, sugars, and trichloracetic acid (38). Another catalytic reaction which accounts for loss of L-ascorbic acid occurs with enzymes, eg, L-ascorbic acid oxidase, a copper protein-containing enzyme. [Pg.13]

In 1931 Ing pointed out that formula (II) and (III) do not contain methyl or potential methyl groups in j ositions 6 and 8 which they occupy in cytisoline. Further, a partially reduced quinoline ought to oxidise easily to a benzenecarboxylic acid and so far the only simple oxidation, products recorded from cytisine were ammonia, oxalic acid and isovaleric acid. Distillation of cytisine with zinc dust or soda-lime yields pyrrole and pyridine, but no quinoline. On these grounds Ing suggested that cytisine should be formulated without a quinoline nucleus, and that the reactions which indicate the presence of an aromatic nucleus in the alkaloid can be accounted for by an a-pyridone ring. This a-pyridone nucleus can... [Pg.143]

The first use of chiral oxazolines as activating groups for nucleophilic additions to arenes was described by Meyers in 1984. " Reaction of naphthyloxazoline 3 with phenyllithium followed by alkylation of the resulting anion with iodomethane afforded dihydronaphthalene 10 in 99% yield as an 83 17 mixture of separable diastereomers. Reductive cleavage of 10 by sequential treatment with methyl fluorosulfonate, NaBKi, and aqueous oxalic acid afforded the corresponding enantiopure aldehyde 11 in 88% yield. [Pg.238]

To a solution of dihydronaphthalene 41 (250 mg, 0.77 mmol) in CH2CI2 (5 mL) was added methyl trifluoromethanesulfonate (227 mg, 1.38 mmol). The mixture was stirred at rt until the starting material had been completely consumed as judged by TLC analysis (3 h). The mixture was cooled to 0°C and a solution of NaBHt (111 mg, 2.92 mmol) in 4 1 MeOH THF (3 mL) was slowly added. The mixture was warmed to rt then quenched with saturated aqueous ammonium chloride (50 mL). The resulting mixture was extracted with CH2CI2 (3 X 50 mL) and the combined organic extracts were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The resulting material was dissolved in 4 1 THF/H2O (5 mL) and oxalic acid (485 mg, 3.85 mmol) was added. The reaction... [Pg.247]

The formation of methyl(benzylsulfonyl)oxamate 70 as the reactive intermediate in the reaction of arylmethanesulfamide 69 and diethyl oxalate, giving 5-aryl-4-hydroxy-3(2f/)-isothiazolone 71, has been reported (99MI1). [Pg.79]

A thioamide of isonicotinic acid has also shown tuberculostatic activity in the clinic. The additional substitution on the pyridine ring precludes its preparation from simple starting materials. Reaction of ethyl methyl ketone with ethyl oxalate leads to the ester-diketone, 12 (shown as its enol). Condensation of this with cyanoacetamide gives the substituted pyridone, 13, which contains both the ethyl and carboxyl groups in the desired position. The nitrile group is then excised by means of decarboxylative hydrolysis. Treatment of the pyridone (14) with phosphorus oxychloride converts that compound (after exposure to ethanol to take the acid chloride to the ester) to the chloro-pyridine, 15. The halogen is then removed by catalytic reduction (16). The ester at the 4 position is converted to the desired functionality by successive conversion to the amide (17), dehydration to the nitrile (18), and finally addition of hydrogen sulfide. There is thus obtained ethionamide (19)... [Pg.255]

A mixture of 50 g of betamethasone, 50 cc of dimethylformamide, 50 cc of methyl orthobenzoate and 1.5 g of p-toluenesulfonicacid Is heated for 24 hours on oil bath at 105°C while a slow stream of nitrogen is passed through the mixture and the methanol produced as a byproduct of the reaction is distilled off. After addition of 2 cc of pyridine to neutralize the acid catalyst the solvent and the excess of methyl orthobenzoate are almost completely eliminated under vacuum at moderate temperature. The residue Is chromatographed on a column of 1,500 g of neutral aluminum oxide. By elution with ether-petroleum ether 30 g of a crystalline mixture are obtained consisting of the epimeric mixture of 170 ,21 -methyl orthobenzoates. This mixture is dissolved without further purification, in 600 cc of methanol and 240 cc of methanol and 240 cc of aqueous 2 N oxalic acid are added to the solution. The reaction mixture is heated at 40°-50°C on water bath, then concentrated under vacuum. The residue, crystallized from acetone-ether, gives betamethasone 17-benzoate, MP 225°-231°C. [Pg.167]

Ethyl Propianyl-Pyruvate 36 grams of methyl ethyl ketone and 73 grams of ethyl oxalate are condensed in the presence of sodium ethylate, the reaction mixture being refluxed in an alcoholic medium. 28 grams of the desired product having a boiling point of 100° to 105°C/6 mm are obtained. [Pg.590]

The addition of various Kolbe radicals generated from acetic acid, monochloro-acetic acid, trichloroacetic acid, oxalic acid, methyl adipate and methyl glutarate to acceptors such as ethylene, propylene, fluoroolefins and dimethyl maleate is reported in ref. [213]. Also the influence of reaction conditions (current density, olefin-type, olefin concentration) on the product yield and product ratios is individually discussed therein. The mechanism of the addition to ethylene is deduced from the results of adsorption and rotating ring disc studies. The findings demonstrate that the Kolbe radicals react in the surface layer with adsorbed ethylene [229]. In the oxidation of acetate in the presence of 1-octene at platinum and graphite anodes, products that originate from intermediate radicals and cations are observed [230]. [Pg.114]

PMT assays were performed as described by Vannier et al. [3] by adding an equal volume of an enzyme preparation to a 0.1 M Tris-HCl buffer containing 3.36 pM of [ C]SAM (1.8 GBq mmol, 740 kBq ml", NEN), 1% (WA ) BSA and 12% sucrose, with or without 0.2% pectic acceptor. The incubation was run at 28°C for 12 h. After precipitation of the reaction product in 70% ethanol, the methylated polymers were selectively extracted with 0.5% ammonium oxalate and radioactivity was measured in a Tricarb 2250 CA Packard scintillation counter. [Pg.712]

Upon recrystallization, [Ni(tpzlmtacn)]2+ affords [Ni(L)(MeCN)]2+ (L = l,4-bis(pyrazol-l-ylmethyl)-l,4,7-triazacyclononane) via a N-dealkylation reaction and loss of a pendent arm.1420 More rational routes to Ni complexes of tacn ligands with only one or two pendent arms have been developed.1431,1432 In [Ni(L)(X) ]x (e.g., L= l-(3-aminopropyl)-l,4,7-triazacyclononane (n = 2) or l-(l-methylimidazol-2-ylmethyl)-l,4,7-triazacyclononane (n = 2) or l,4-bis(l-methyl-imidazol-2-ylmethyl)-l,4,7-triazacyclononane (n = 1), the coordination sphere is completed by additional ligands that bind either terminal (X = C1 , H20) or bridge two metal ions (X = N3 , OH, oxalate). The Ni11 complex of l,4-bis(2-pyridylmethyl)-l,4,7-triazacyclononane has been shown to be extremely inert to ligand dissociation in aqueous solution.1433 In (562), the tacn ligand provides a single bidentate arm.1434... [Pg.376]


See other pages where Methyl oxalate, reactions is mentioned: [Pg.404]    [Pg.485]    [Pg.408]    [Pg.512]    [Pg.127]    [Pg.113]    [Pg.259]    [Pg.253]    [Pg.1062]    [Pg.71]    [Pg.459]    [Pg.77]    [Pg.309]    [Pg.416]    [Pg.513]    [Pg.155]    [Pg.265]    [Pg.176]    [Pg.81]    [Pg.190]    [Pg.9]    [Pg.173]    [Pg.240]    [Pg.104]    [Pg.1062]    [Pg.58]    [Pg.37]   
See also in sourсe #XX -- [ Pg.354 , Pg.357 ]




SEARCH



Methyl oxalate

Methyl oxalate, reactions hydrolysis

© 2024 chempedia.info