Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl malonate alkylation

In the next stage the introduction of a fluorine atom onto the chiral center was examined with some 2-fluoro-2-alkyl malonic acid diesters with lipases. When the hydrolysis of 2-fluoro-2-methyl malonic aicd diester was examined with pig... [Pg.125]

A less familiar ring system, but one that was part of a molecule selected for advanced testing, was the 5-methyl-6-oxo-4-(trifluoromethyl)-l-(6H)-pyridazinyl ring system of flufenpyr-ethyl (43). The pyridazinyl heterocycle can be prepared from the reaction of 4-chloro-2-fluoro-5-hydroxyphenyl hydrazine (48) and 1,1-dibromo-3,3,3-trifluoroacetone (49) to give the corresponding hydrazone 50, which when reacted with methyl malonic acid (51), in the presence of a base, provides the intermediate 52. Acid-catalyzed ring closure of 52, followed by 0-alkylation of 53 with ethyl chloroacetate, results in the synthesis of flufenpyr-ethyl (43) [73] (Scheme 3.2). [Pg.166]

Esters are much easier to work with than carboxylic acids, and a useful alternative procedure removes one ester group without having to hydrolyse the other. The malonate ester is heated in a polar aprotic solvent—usually DMSO—in the presence of sodium chloride and a little water. No acid or base is required and, apart from the high temperature, the conditions are fairly mild. The scheme below shows a dimethyl malonate alkylation (note that NaOMe is used with the dimethyl ester) and removal of the methyl ester. [Pg.597]

Substitution Derivatives of Ethyl Malonate, Ethyl malonate resembles ethyl acetoacetate in that it gives rise to mono- and di-substituted derivatives in precisely similar circumstances. Thus when ethanolic solutions of ethyl malonate and of sodium ethoxide are mixed, the sodium derivative (A) of the enol form is produced in solution. On boiling this solution with an alkyl halide, e.g, methyl iodide, the methyl derivative (B) of the keto form is obtained. When this is treated again in ethanolic solution with sodium ethoxide, the... [Pg.275]

The carbopalladation is extended to homoallylic amines and sulfides[466. Treatment of 4-dimethylamino-l-butene (518) with diethyl malonate and Li2PdCl4 in THF at room temperature leads to the oily carbopalladated complex 519, hydrogenation of which affords diethyl 4-(dimethylamino) butylmalonate (520) in an overall yield of 91%. Similarly, isopropyl 3-butenyl sulfide (521) is carbopalladated with methyl cyclopentanonecarboxylate and Li2PdCl4. Reduction of the complex affords the alkylated keto ester 522 in 96% yield. Thus functionalization of alkenes is possible by this method. [Pg.96]

Carbon is alkylated ia the form of enolates or as carbanions. The enolates are ambident ia activity and can react at an oxygen or a carbon. For example, refluxing equimolar amounts of dimethyl sulfate and ethyl acetoacetate with potassium carbonate gives a 36% yield of the 0-methylation product, ie, ethyl 3-methoxy-2-butenoate, and 30% of the C-methylation product, ie, ethyl 2-methyl-3-oxobutanoate (26). Generally, only one alkyl group of the sulfate reacts with beta-diketones, beta-ketoesters, or malonates (27). Factors affecting the 0 C alkylation ratio have been extensively studied (28). Reaction ia the presence of soHd Al O results mosdy ia C-alkylation of ethyl acetoacetate (29). [Pg.199]

Replacement of the methyl ketone moiety in 78 by a phenyl sulfoxide, interestingly, leads to a relatively potent uricosuric agent with diminished antiinflammatory action. This effect in lowering serum levels or uric acid leads to the use of this drug in the treatment of gout. Alkylation of diethyl malonate with the chlorosulfide, 79, gives the intermediate, 80. The pyrazolodione (81) is prepared in the usual way by condensation with hydrazobenzene. Careful oxidation of the sulfide with one equiv-... [Pg.237]

Just as the malonic ester synthesis converts an alkyl halide into a carboxylic acid, the acetoacetic ester synthesis converts an alkyl halide into a methyl ketone having three more carbons. [Pg.859]

Alpha hydrogen atoms of carbonyl compounds are weakly acidic and can be removed by strong bases, such as lithium diisopropylamide (LDA), to yield nucleophilic enolate ions. The most important reaction of enolate ions is their Sn2 alkylation with alkyl halides. The malonic ester synthesis converts an alkyl halide into a carboxylic acid with the addition of two carbon atoms. Similarly, the acetoacetic ester synthesis converts an alkyl halide into a methyl ketone. In addition, many carbonyl compounds, including ketones, esters, and nitriles, can be directly alkylated by treatment with LDA and an alkyl halide. [Pg.866]

MalONIC ACID, ETHYLHYDROXY, DIETHYL ESTER, BENZOATE, 45, 37 Mfsitaidehydf, 47, 1 Mesitylcne, condensation with dichloro methyl methyl ether, 47, 1 Methalljl chloride in alkylation of 2,4-pentanedione with potassium carbonate, 47, 87... [Pg.132]

Pd-catalyzed asymmetric allylic alkylation is a typical catalytic carbon-carbon bond forming reaction [ 126 -128]. The Pd-complex of the ligand (R)-3b bearing methyl, 2-biphenyl and cyclohexyl groups as the three substituents attached to the P-chirogenic phosphorus atom was found to be in situ an efficient catalyst in the asymmetric allylic alkylation of l-acetoxy-l,3-diphenylprop-2-en (4) with malonate derivatives in the presence of AT,0-bis(trimethylsilyl)acetamide (BSA) and potassium acetate, affording enantioselectivity up to 96% and quantitative... [Pg.35]

With the A-ring unit readily available, we directed our attention to the formation of the B-ring. At first, we duplicated the five step scheme reported in Sih s strigol synthesis involving 1) esterification of the acid 14, 2) allylic bromination with N-bromo 8 ucc i n imi d e (NBS) to 15, 3) condensation with the sodium salt of dimethyl malonate to 16, 4) alkylation with methyl bromoacetate to 17, and 5) acid catalyzed hydrolysis and decarboxylation to the acid 18. [Pg.440]

A diastereoselective synthesis of bis(3,5)pyrazolophanes was accomplished by sequential inter- and intramolecular cycloadditions of homochiral nitrilimine intermediates . A-Alkyl pyrazolidine-3,5-diones were synthesized in a three-step sequence from dialkyl malonates <00JHC1209>. Methyl acetoacetate was employed as the initial substrate to 3-carboxamido-4-pyrazolecatboxylic acid derivatives <00JHC175>. Vilsmeier type reagent 33 reacted with imines 34 to afford enaminoimine hydrochlorides 35, which were transformed to pyrazoles 36 upon addition of hydrazine <0OJHC13O9>. [Pg.170]

In the uncatalyzed condensations of 2-aminopyridines, alkyl orthoformate, and dialkyl malonate at 110°C, 2-pyridylaminomethylenemalona-mates (263, R = H, Me R1 = Me, Et) were obtained in 20-25% yields. When isoamyl orthoformate was applied, a 5.2 4.8 mixture of ethyl and isoamyl N-(6-methyl-2-pyridyl)aminomethylenemalonamates (263, = Me, R1 = Et and isoamyl) was isolated in 90% yield (87SC549). [Pg.75]

Ceric ammonium nitrate promoted oxidative addition of silyl enol ethers to 1,3-butadiene affords 1 1 mixtures of 4-(/J-oxoalkyl)-substituted 3-nitroxy-l-butene and l-nitroxy-2-butene27. Palladium(0)-catalyzed alkylation of the nitroxy isomeric mixture takes place through a common ij3 palladium complex which undergoes nucleophilic attack almost exclusively at the less substituted allylic carbon. Thus, oxidative addition of the silyl enol ether of 1-indanone to 1,3-butadiene followed by palladium-catalyzed substitution with sodium dimethyl malonate afforded 42% of a 19 1 mixture of methyl ( )-2-(methoxycarbonyl)-6-(l-oxo-2-indanyl)-4-hexenoate (5) and methyl 2-(methoxycarbonyl)-4-(l-oxo-2-indanyl)-3-vinylbutanoate (6), respectively (equation 12). [Pg.698]

A variety of other carbon nucleophiles have been alkylated with alcohols including malonate esters, nitroaUcanes, ketonitriles [119, 120], barbituric acid [121], cyanoesters [122], arylacetonitriles [123], 4-hydroxycoumarins [124], oxi-ndoles [125], methylpyrimidines [126], indoles [127], and esters [128]. Selected examples are given in Scheme 35. Thus, benzyl alcohol 15 could be alkylated with nitroethane 147, 1,3-dimethylbarbituric acid 148, phenylacetonitrile 149, methyl-pyrimidine 150, and even f-butyl acetate 151 to give the corresponding alkylated products 152-156. [Pg.102]


See other pages where Methyl malonate alkylation is mentioned: [Pg.4]    [Pg.1352]    [Pg.464]    [Pg.171]    [Pg.679]    [Pg.285]    [Pg.679]    [Pg.679]    [Pg.637]    [Pg.365]    [Pg.679]    [Pg.796]    [Pg.101]    [Pg.149]    [Pg.46]    [Pg.53]    [Pg.156]    [Pg.318]    [Pg.493]    [Pg.40]    [Pg.56]    [Pg.178]    [Pg.273]    [Pg.158]    [Pg.205]    [Pg.97]    [Pg.188]    [Pg.191]    [Pg.532]    [Pg.251]    [Pg.227]    [Pg.101]   
See also in sourсe #XX -- [ Pg.13 , Pg.79 ]

See also in sourсe #XX -- [ Pg.13 , Pg.79 ]




SEARCH



Alkyl-methyl

Alkylation malonates

Malonate, alkyl

Malonic alkylation

Methyl malonate

© 2024 chempedia.info