Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl butadiene-styrene, graft

MBS (methyl methacrylate-butadiene-styrene) graft copolymers are known as one of the most efficient non-reactive impact modifiers for PET and also poly(vinyl chloride) (PVC). MBS is used commercially as an effective impact modifier for PET recyclate [27], Typical MBS rubber particles contain an elastomeric core of... [Pg.511]

MBS (poly(methyl methacrylate)-g-poly(butadiene/styrene) graft copolymer) Paraloid EXL Rohm Haas... [Pg.512]

M.K. Laughner, Molding compositions with methyl (meth)acrylate-butadiene-styrene graft copolymers, US Patent 5 087 663, assigned to The Dow Chemical Company (Midland, MI), February 11,1992. [Pg.329]

Comparison of Methyl Methacrylate-Butadiene-Styrene with Acrylonitrile-Butadiene—Styrene Graft Copolymers... [Pg.240]

A transparent rigid vinyl bottle compound is produced by blending PVC homopolymer with a methyl methacrylate/butadiene/ styrene graft polymer of equal refractive index. [Pg.231]

Weather-resistant ABS can be obtained either by the incorporation of EVAc [Fukushima and Mitarai, 1971], or by replacing PB with EPDM, to obtain AES [Wefer, 1984, 1985, 1988]. Alternatively, blends of SAN with maleated EPDM and CPE may be used [JCim et al., 1994]. However, the non-weatherable styrenics are frequentiy prepared by dissolving an elastomer in methyl methacrylate, and either styrene or a-methylstyrene, then polymerizing them into methyl methacrylate-butadiene-styrene graft copolymers... [Pg.31]

Figure 14.9 Effect of various impact modifiers (25wt%) on the notched Izod impact strength of recycled PET (as moulded and annealed at 150°C for 16 h) E-GMA, glycidyl-methacrylate-functionalized ethylene copolymer E-EA-GMA, ethylene-ethyl acrylate-glycidyl methacrylate (72/20/8) terpolymer E-EA, ethylene-ethyl acrylate EPR, ethylene propylene rubber MA-GPR, maleic anhydride grafted ethylene propylene rubber MBS, poly(methyl methacrylate)-g-poly(butadiene/styrene) BuA-C/S, poly(butyl acrylate-g-poly(methyl methacrylate) core/shell rubber. Data taken from Akkapeddi etal. [26]... Figure 14.9 Effect of various impact modifiers (25wt%) on the notched Izod impact strength of recycled PET (as moulded and annealed at 150°C for 16 h) E-GMA, glycidyl-methacrylate-functionalized ethylene copolymer E-EA-GMA, ethylene-ethyl acrylate-glycidyl methacrylate (72/20/8) terpolymer E-EA, ethylene-ethyl acrylate EPR, ethylene propylene rubber MA-GPR, maleic anhydride grafted ethylene propylene rubber MBS, poly(methyl methacrylate)-g-poly(butadiene/styrene) BuA-C/S, poly(butyl acrylate-g-poly(methyl methacrylate) core/shell rubber. Data taken from Akkapeddi etal. [26]...
Although this method yields a mixture of homopolymer and graft copolymer, and probably also ungrafted backbone polymer, some of the systems have commercial utility. These are high-impact polystyrene (HIPS) [styrene polymerized in the presence of poly(l,3-buta-diene)], ABS and MBS [styrene-acrylonitrile and methyl methacrylate-styrene, respectively, copolymerized in the presence of either poly(l,3-butadiene) or SBR] (Sec. 6-8a). [Pg.754]

The composition of the grafted side chain copolymer has also been determined by Sakurada (113) and found to be different from the normal copolymer formed with acrylonitrile and butadiene. With styrene the grafted copolymers were found to be richer in acrylonitrile than the normal copolymer. Similar differences were found by Resting (114) with methyl methacrylate and styrene grafted to cotton and by Odian et al. (115) with grafting mixed monomers to Teflon and to polyethylene. It is believed that one monomer may be preferentially sorbed or diffused faster than the other, leading to a different monomer ratio at the actual site of grafting. [Pg.137]

The mechanical degradation and production of macroradicals can also be performed by mastication of polymers brought into a rubbery state by admixture with monomer several monomer-polymer systems were examined (10, 11). This technique was for instance studied for the cold mastication of natural rubber or butadiene copolymers in the presence of a vinyl monomer (13, 31, 52). The polymerization of methyl methacrylate or styrene during the mastication of natural rubber has yielded copolymers which remain soluble up to complete polymerization vinyl acetate, which could not produce graft copolymers by the chain transfer technique, failed also in this mastication procedure. Block and graft copolymers were also prepared by cross-addition of the macroradicals generated by the cold milling and mastication of mixtures of various elastomers and polymers, such as natural rubber/polymethyl methacrylate (74), natural rubber/butadiene-styrene rubbers (76) and even phenol-formaldehyde resin/nitrile rubber (125). [Pg.194]

The importance of the graft handle on a 62/38 butadiene-methyl methacrylate rubber can be illustrated by its effect on the optical properties of the polyblend. From Table II it can be seen that the reduction in percent haze is dramatic for an increase of methyl methacrylate graft from 0 to 27% by weight, while there is no apparent change in the light transmission. The blend resin in this polyblend system was an 88-12 methyl methacrylate-styrene copolymer, and the total resin to backbone rubber ratio was kept at 2.5-1.0. The measured refractive indices are included for each component (the graft rubber and the blend resin). The difference in refractive index amounts to no more than 0.004 unit for any of the components. [Pg.255]

Typical mechanical properties for transparent injection-molded polymers, designated MBAS, having a compositional range of from 11-18%, 1,3-butadiene, 34-39% styrene, and 23-25% each of acrylonitrile and methyl methacrylate are given in Table IV. This polymer is closely akin to the polyblend described previously, differing by containing a butadiene-styrene elastomer backbone, with a terpolymer resin graft consist-... [Pg.258]

Organic peroxides are used to initiate free-radical polymerization of ethylene, butadiene, styrene, vinyl chloride, vinyl acetate, and methyl methacrylate. They are also used to cure unsaturated polyesters, occasionally to cross-link thermoplastics such as polyethylene and polyacrylates, and increasingly for grafting and compatibiliza-tion of polymer blends. A variety of organic peroxides offer useful reactivity over a temperature range from 0 to 130°C or more, for different polymers and different processes. [Pg.664]

Clarity of Graft Polymers with Varying Methyl Methacrylate/ Styrene Ratios. Refractive index considerations 7,8) and general state of the art considerations (8) favor methyl methacrylate (MMA) over styrene (St) as the major monomer portion of the matrix. With this in mind, we selected MMA/St ratios from 62/38 to 80/20 (wt %). Using a commercial Firestone butadiene latex (2004) to supply the 15% rubber graft, polymerization runs were made as outlined in Table I. [Pg.270]

Other Impact-Modified Commercial Grafting-Based Polymers Typical HIPS and ABS polymers are opaque materials however, MABS (methyl methacrylate-acrylonitrile-butadiene-styrene) polymers, which are produced by processes similar to those used in the production of ABS, are transparent materials. This property is obtained by the addition of methyl methacrylate (MMA) to the recipe in order to impart transparency to the polymer by equalizing the refracting index of the rubber particles to that of the matrix. These materials find applications... [Pg.209]

Acrylic resin Acrylonitrilefbutadiene/styrene copolymer Bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite Butadiene/acrylonitrile copolymer EthyleneA/A copolymer Methoxyethyl acrylate Methyl methacrylate butadiene styrene terpolymer Polyethylene elastomer, chlorinated 2-Propenoic acid, 2-methylmethyl ester, polymer with 1,3-butadiene and butyl 2-propenoate impact modifier, PVC rigid EVA/PVC graft polymer impact modifier, recycled polyamides EPDM, maleated impact modifier, thermoplastics Butadiene/acrylonitrile copolymer impact strength modifier PEG-6 trimethylolpropane impact-resistance lights Polyester carbonate resin impact-resistance, lights Polyester carbonate resin impeller... [Pg.5374]

All the commercial PBT/PC and PET/PC blends also contain typically 10-20 wt% of an additional elastomeric impact modifier. The exact nature and the content of the impact modifier is kept proprietary and often forms the basis for a particular blend patent. Typically, core-shell rubbers such as poly(methyl methacrylate)-grafted butadiene-styrene rubber (MBS) or an all acrylic core-shell rubber such as poly (MMA-g-n-BuA) are used (Nakamura et al. 1975 Chung et al. 1985). ABS (with high polybutadiene content >50 %) or ASA rubber (>50 % aciylate rubber) have also been used. The presence of such a rubber component is definitely needed to obtain high notched Izod impact strengths (>500 J/m) in these blends. [Pg.1829]

Graft copolymer of acrylonitrile-butadiene-styrene-methyl methacrylate... [Pg.2155]

Impact Modifiers Impact modifiers are either systems with spherical elastomer particles in a rigid polymer matrix or they are systems with a honeycomb, network type of dispersed elastomeric phase. For the spherical elastomeric particles, examples are acrylonitrile butadiene styrene (ABS), methacrylate-butadiene-styrene (MBS) and acrylics. These systems are either graft copolymers of methyl methacrylate-butyl acrylate-styrene or methyl methacrylate-ethylhexyl acrylate-styrene. For the honeycomb, network type of dispersed elastomeric phase ethylene vinyl acetate (EVA) and chlorinated polyethylene (CPE) or directly dispersed rubber are examples. Both of these two impact modifiers exist in the polymeric form, hence they can hardly migrate and evaporate because of their size. As a result, they pose almost no problems to health. For PVC window frame production, usually the first type (and acrylic impact modifiers) are used while MBS modifiers are found to be very effective in plasticised as well as in rigid PVC. CPE is mainly used in PVC for products like sheet, pipe, gutters and sidings. [Pg.429]


See other pages where Methyl butadiene-styrene, graft is mentioned: [Pg.47]    [Pg.191]    [Pg.831]    [Pg.541]    [Pg.311]    [Pg.530]    [Pg.196]    [Pg.269]    [Pg.191]    [Pg.258]    [Pg.11]    [Pg.375]    [Pg.361]    [Pg.191]    [Pg.431]    [Pg.159]    [Pg.311]    [Pg.210]    [Pg.84]    [Pg.149]    [Pg.5577]    [Pg.831]    [Pg.1780]    [Pg.1786]    [Pg.348]    [Pg.302]    [Pg.123]    [Pg.626]   


SEARCH



3- -4-methyl-styren

Butadiene grafting

METHYL STYRENE

Styrene-butadiene

© 2024 chempedia.info