Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methanol oxidation states

Oxidation Catalysis. The multiple oxidation states available in molybdenum oxide species make these exceUent catalysts in oxidation reactions. The oxidation of methanol (qv) to formaldehyde (qv) is generally carried out commercially on mixed ferric molybdate—molybdenum trioxide catalysts. The oxidation of propylene (qv) to acrolein (77) and the ammoxidation of propylene to acrylonitrile (qv) (78) are each carried out over bismuth—molybdenum oxide catalyst systems. The latter (Sohio) process produces in excess of 3.6 x 10 t/yr of acrylonitrile, which finds use in the production of fibers (qv), elastomers (qv), and water-soluble polymers. [Pg.477]

Ca.ta.lysis, The readily accessible +1 and +3 oxidation states of rhodium make it a useful catalyst. There are several reviews of the catalytic properties of rhodium available (130—132). Rhodium-catalyzed methanol carbonylation (Monsanto process) accounted for 81% of worldwide acetic acid by 1988 (133). The Monsanto acetic acid process is carried out at 175°0 and 1.5 MPa (200 psi). Rhodium is introduced as RhCl3 but is likely reduced in a water... [Pg.180]

The performance of many metal-ion catalysts can be enhanced by doping with cesium compounds. This is a result both of the low ionization potential of cesium and its abiUty to stabilize high oxidation states of transition-metal oxo anions (50). Catalyst doping is one of the principal commercial uses of cesium. Cesium is a more powerflil oxidant than potassium, which it can replace. The amount of replacement is often a matter of economic benefit. Cesium-doped catalysts are used for the production of styrene monomer from ethyl benzene at metal oxide contacts or from toluene and methanol as Cs-exchanged zeofltes ethylene oxide ammonoxidation, acrolein (methacrolein) acryflc acid (methacrylic acid) methyl methacrylate monomer methanol phthahc anhydride anthraquinone various olefins chlorinations in low pressure ammonia synthesis and in the conversion of SO2 to SO in sulfuric acid production. [Pg.378]

Oxidation catalysts are either metals that chemisorb oxygen readily, such as platinum or silver, or transition metal oxides that are able to give and take oxygen by reason of their having several possible oxidation states. Ethylene oxide is formed with silver, ammonia is oxidized with platinum, and silver or copper in the form of metal screens catalyze the oxidation of methanol to formaldehyde. Cobalt catalysis is used in the following oxidations butane to acetic acid and to butyl-hydroperoxide, cyclohexane to cyclohexylperoxide, acetaldehyde to acetic acid and toluene to benzoic acid. PdCh-CuCb is used for many liquid-phase oxidations and V9O5 combinations for many vapor-phase oxidations. [Pg.2095]

Eosin Flavonoids Morin Flavonol, fisetin, robinetin Quercetin Rutin condensation products of urea, formaldehyde and methanol [126], pesticide derivatives [127] sweetening agents [128, 129] anion-active and nonionogenic surface-active agents [130] steroids, pesticides [29,132, 133] pesticides [134—137] vanadium in various oxidation states [138] uracil derivatives [139]... [Pg.44]

Fig. 2 shows the dynamic response of stack voltage to the step changes of various applied current densities. Like the former case of applied current pulses, the response exhibits the overshooting and relaxation which is caused by the methanol oxidation kinetics on the catalyst surface. The steady state stack voltage was found to be the same for both pulse and step loads with the same current density. [Pg.594]

Special attention was paid to the detection of residual Cu-fl quantities accompanying the metallic Cu. The relative amounts of Cu+1 and Cu were determined by curve-fitting the Cu (LMM) spectra using the Physical Electronics Version 6 curve-fitting program. The catalyst showed reduction of Cu+2 Into a mixture of Cu+1 and Cu after reduction In H2 at 250 C for one hour (Figure 6) as evidenced by the two resolved peaks In the Cu (LMM) spectrum at 568.0 and 570.3 eV which are characteristic of Cu and Cu+1, respectively, and by the disappearance of the Cu+2 2p satellite structure. It could be shown that less than 2%, If any, of the total Cu could be present In the +1 oxidation state during methanol formation. However, when the catalyst was briefly exposed to air (1 minute), a few percent of Cu+1 readily formed (7). Thus, any kind of oxidation environment has to be avoided between methanol synthesis and catalyst analysis. Otherwise, appreciable amounts of Cu+1 will be detected. [Pg.21]

Depending on current density, the working potential of steady-state methanol oxidation varies within the range 0.35 to 0.65 V (RHE). Therefore, the working voltage of a methanol-oxygen fuel cell will have values between 0.4 and 0.7 V. [Pg.287]

Using the colloidal Pt(i t ) + RU c/C catalysts described above, the optimal atomic ratio depends upon methanol concentration, cell temperature, and applied potential, as shown by the Tafel plots recorded with methanol concentrations of 1.0 and 0.1 M at T = 298K (Fig. 11.4) and 318K (Fig. 11.5). Some authors have stated that for potentials between 0.35 and 0.6 V vs. RHE, the slow reaction rate between adsorbed CO and adsorbed OH species must be responsible for the rate of the overall process [Iwasita et al., 2000]. From these results, it can be underlined that, at a given constant potential lower than 0.45-0.5 V vs. RHE, an increase in temperature requires an increase in Ru content to enhance the rate of methanol oxidation, and that, at a given constant potential greater than 0.5 V vs. RHE, an increase in temperature requites a decrease in Ru content to enhance the rate of methanol oxidation. [Pg.350]

Similar ideas can be applied to formaldehyde oxidation. For bulk formaldehyde oxidation, we found predominant formic acid formation under current reaction conditions rather than CO2 formation. Hence, it cannot be ruled out, and may even be realistic, that formaldehyde is first oxidized to formic acid, which can subsequently be oxidized to CO2. The steady-state product distribution at 0.6 V is much more favorable for such a mechanism as in the case of methanol oxidation. On the other hand, because of the high efficiency of COad formation from formaldehyde, this process is likely to proceed directly from formaldehyde adsorption rather than via formation and re-adsorption of formic acid. Alternatively, the second oxygen can be introduced via formaldehyde hydration to methylene glycol, which could be further oxidized to formic acid and finally to CO2 (see the next paragraph). [Pg.447]

From structural characterization of 48 by X-ray crystallography [31], it is suggested that formation of stable Ru 11,111- cluster derivative 47 or 48 is involved in substitution of the axially coordinated methanol as well as one of the six bridging acetates in the Ru ni ni precursor 2 by an abpy or abcp, in which formal oxidation state of the triruthenium species is converted from 111,111,111 to III,III,II. [Pg.166]

The kinetics of three redox processes have been studied for sensitized Ti02 systems where the sensitizers are [Ru(dicarboxy-bpy)2(CN)2], [Ru(dicarboxy-bpy)2(SCN)2], [Os(dicarboxy-bpy)2(CN)2], and [Os(dicar-boxy-bpy)2(SCN)2] (30). The Ru(II) complexes display characteristic excited-state spectra in methanol solution and decay back to the ground state with lifetimes of about 200 ns. For the Os(II) complexes in solution the excited states decay much more rapidly (< 10ns). On the other hand, when these complexes are adsorbed on Ti02 excitation leads to the prompt conversion to the M(III) oxidation state, as indicated by transient visible absorption spectra. These results imply that electron injection from all four of the excited sensitizers into the Ti02 occurs rapidly (< 10 ns). [Pg.386]


See other pages where Methanol oxidation states is mentioned: [Pg.124]    [Pg.43]    [Pg.130]    [Pg.182]    [Pg.603]    [Pg.51]    [Pg.61]    [Pg.85]    [Pg.101]    [Pg.103]    [Pg.398]    [Pg.100]    [Pg.346]    [Pg.392]    [Pg.434]    [Pg.440]    [Pg.441]    [Pg.446]    [Pg.453]    [Pg.465]    [Pg.18]    [Pg.116]    [Pg.273]    [Pg.165]    [Pg.166]    [Pg.121]    [Pg.60]    [Pg.175]    [Pg.277]    [Pg.291]    [Pg.228]    [Pg.242]    [Pg.149]    [Pg.153]    [Pg.160]    [Pg.115]    [Pg.1396]    [Pg.113]   


SEARCH



Methanol oxidation

© 2024 chempedia.info