Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metals dissolved metal determination

Dissolved metal determinations with a large range of sensitivities are also possible. Manganese can be determined colorimetrically with dihy-droxyiminomethane (formaldioxime) (46). An iron determination with an amperometric detector that can resolve iron(II) and iron(III) has been reported (36). Dissolved iron can also be determined with ferrozine (47). The detection limits obtained with these analyses are on the order of 1 [xM. This level is not low enough for work in open ocean water, but the analyses would be of use in anoxic water and the interstitial water of sediments. [Pg.20]

Perhaps the simplest case of reaction of a solid surface is that where the reaction product is continuously removed, as in the dissolving of a soluble salt in water or that of a metal or metal oxide in an acidic solution. This situation is discussed in Section XVII-2 in connection with surface area determination. [Pg.282]

If an appreciable amount of residue remains, note its colour. Add a few drops of water and test the solution (or suspension) with htmus or with Universal indicator paper. Then add a httle dilute hydrochloric acid and observe whether efiervesceiice occurs and the residue dissolves. Apply a flame test with a platinum wire on the hydrochloric acid solution to determine the metal present. (In rare cases, it may be necessary to subject a solution of the residue to the methods of qualitative inorganic analysis to identify the metal or metals present.) If the flame test indicates sodium, repeat the ignition of the substance on platinum foil. [Pg.1038]

Bromine is used as an analytical reagent to determine the amount of unsaturation in organic compounds because carbon—carbon double bonds add bromine quantitatively, and for phenols which add bromine in the ortho and para positions. Standard bromine is added in excess and the amount unreacted is deterrnined by an indirect iodine titration. Bromine is also used to oxidize several elements, such as T1(I) to T1(III). Excess bromine is removed by adding phenol. Bromine plus an acid, such as nitric and/or hydrochloric, provides an oxidizing acid mixture usefiil in dissolving metal or mineral samples prior to analysis for sulfur. [Pg.288]

Electroless plating rates ate affected by the rate of reduction of the dissolved reducing agent and the dissolved metal ion which diffuse to the catalytic surface of the object being plated. When an initial continuous metal film is deposited, the whole surface is at one potential determined by the mixed potential of the system (17). The current density is the same everywhere on the surface as long as flow and diffusion are unrestricted so the metal... [Pg.106]

The most important quantity that determines the instability in pitting dissolution is the fluctuation of the electrochemical potential of dissolved metal ions in the electric double layer. In the presence of a large amount of supporting electrolyte, the fluctuation can be formulated with the fluctuations of the potential x, y, ff of the Helmholtz layer and the concentration cm (, y, Cfl.0a as follows,... [Pg.252]

The presence of a Faradaic electrode reaction of any kind competing with the double layer charging presents a problem in determining the purely capacitive current needed to calculate the surface charge. From a plot of 1 vs. (/ = total electrode current) with a fixed concentration of the ions of the electrode metal dissolved in solution, the surface charge can be obtained [65Butl]. (Data obtained with this method are labelled TC). [Pg.184]

Reduction of Ketones and Enones. Although the method has been supplanted for synthetic purposes by hydride donors, the reduction of ketones to alcohols in ammonia or alcohols provides mechanistic insight into dissolving-metal reductions. The outcome of the reaction of ketones with metal reductants is determined by the fate of the initial ketyl radical formed by a single-electron transfer. The radical intermediate, depending on its structure and the reaction medium, may be protonated, disproportionate, or dimerize.209 In hydroxylic solvents such as liquid ammonia or in the presence of an alcohol, the protonation process dominates over dimerization. Net reduction can also occur by a disproportionation process. As is discussed in Section 5.6.3, dimerization can become the dominant process under conditions in which protonation does not occur rapidly. [Pg.435]

GC/FPD has been used to measure hydrogen sulfide, free disulfide, and dissolved metal sulfide complexes in water (Radford-Knoery and Cutter 1993). Hydrogen sulfide was measured in the headspace of the sample (100 mL) with a detection limit of 0.6 pmol/L. A detection limit of 0.2 pmol/L was obtained for total dissolved sulfide. This method allows for the determination of the concentration of free sulfide that is in equilibrium with hydrogen sulfide. Complexed sulfide can be estimated from the difference between total dissolved sulfide and free sulfide. [Pg.164]

Batley [28] examined the techniques available for the in situ electrodeposition of lead and cadmium in estuary water. These included anodic stripping voltammetry at a glass carbon thin film electrode and the hanging drop mercury electrode in the presence of oxygen and in situ electrodeposition on mercury coated graphite tubes. Batley [28] found that in situ deposition of lead and cadmium on a mercury coated tube was the more versatile technique. The mercury film, deposited in the laboratory, is stable on the dried tubes which are used later for field electrodeposition. The deposited metals were then determined by electrothermal atomic absorption spectrometry, Hasle and Abdullah [29] used differential pulse anodic stripping voltammetry in speciation studies on dissolved copper, lead, and cadmium in coastal sea water. [Pg.338]

Whatever the best explanation may be, an indication that allylic alkali metal compounds or allylic carbanions do in fact form the less stable of the two possible acids on neutralization is found in the results of the reduction of aromatic compounds by dissolving metals.376The detection of a paramagnetic intermediate in a similar system and polaro-graphic evidence indicate a one electron transfer in the rate and potential determining step.878 376 The mechanism therefore involves ions (or organometallic intermediates) like the following ... [Pg.201]

Kinetic testing of the rougher tails sample was carried out in accordance with standard ASTM, 2001. Leachate samples were collected each week for 76 weeks and analyzed for a range of parameters including conductivity, pH, acidity, total alkalinity, sulfate and a suite of dissolved metals. Dissolved metals and metalloids were determined by ICP-MS, other parameters by titration or selective ion electrode methods. [Pg.84]

Rates of reductive dissolution of transition metal oxide/hydroxide minerals are controlled by rates of surface chemical reactions under most conditions of environmental and geochemical interest. This paper examines the mechanisms of reductive dissolution through a discussion of relevant elementary reaction processes. Reductive dissolution occurs via (i) surface precursor complex formation between reductant molecules and oxide surface sites, (ii) electron transfer within this surface complex, and (iii) breakdown of the successor complex and release of dissolved metal ions. Surface speciation is an important determinant of rates of individual surface chemical reactions and overall rates of reductive dissolution. [Pg.446]

If the catalyst is in the same phase as the reactant (e.g., dissolved metals catalyzing transformation of dissolved organic substances), the catalysis is called homogeneous. When the catalytic process is determined by a catalyst in a different phase than the reactant (e.g., solid metal oxides catalyzing transformation of dissolved organic or inorganic substances), the catalysis is called heterogeneous. In this case, the catalyzed reaction steps occur very close to the solid surface the reactions may be between the molecules adsorbed on the catalyst surface or may involve the top-most atomic layer of the catalyst. [Pg.295]

Ishibashi et al. devised a potentiometric sensor for the determination of non-ionic surfactants which they improved in several steps. Initially, the authors used a sensor based on a PVC membrane plasticized with 2-nitro-phenyl octyl ether that was responsive to cationic complexes formed between a dissolved metal ion and non-ionic surfactants in the sample [116]. At a later stage, they studied the effect of foreign species and elucidated the perturbation from ionic surfactants [117], which they eventually overcame by inserting an ion-exchange column into the base system [118]. [Pg.232]

Elemental composition Fe 77.73%, 0 22.27%. The oxide maybe characterized by x-ray methods. The metal may be determined by dissolving the compound in dilute nitric acid, diluting the extract appropriately and analyzing... [Pg.432]

The dissolution and measurement experiments start with attempts to dissolve a sample (300 yg or less) of a metal or metal compound species using the prescribed NIOSH procedure, followed by measurement using the NIOSH atomic absorption spectrometric (AAS) procedure. If 90 percent recovery of the metal is not achieved, the dissolution procedure is modified, or changed completely, to achieve 90 percent recovery. From previous studies, it is expected that the metal oxides, and selenium generally, would pose problems. The NIOSH-AAS procedures are to be evaluated also, especially when the dissolution matrix is changed. The AAS detection limits using standards are determined through the measurement of blanks. [Pg.96]

Rate-determining step, hydroformylation, 163 Reactivity, enantiomers, 286 Recognition, enantiomers, 278 Reduction and oxidation, 5 Reductive coupling, dissolving metal, 288 Reductive elimination, 5, 111 Resolution. See Kinetic resolution Rhenium-carbene complexes, 288 Rhodium-catalyzed hydrogenation, 17, 352 amino acid synthesis, 18, 352 BINAP, 20... [Pg.197]

Alkali metal anions have also been generated as a result of cryptand stabilization of the corresponding cation. Cryptands were found to enhance the solubility of zerovalent alkali metals in various organic solvents.156-157 Initially, the solutions apparently contain the cryptate cation and solvated electrons together with free ligand. When more metal is dissolved, metal anions, M , are formed.158 Dye and co-workers have isolated gold-colored crystals of [Na+ c 2.2.2]Na 159160 and the crystal structure has been determined.161,162 Anion clusters such as Sb] , Pb2 and Sn," have been isolated as crystalline salts of the [2.2.2] cryptate counterion [2.2.2].162,163... [Pg.938]


See other pages where Metals dissolved metal determination is mentioned: [Pg.174]    [Pg.185]    [Pg.405]    [Pg.96]    [Pg.124]    [Pg.134]    [Pg.246]    [Pg.299]    [Pg.1417]    [Pg.163]    [Pg.55]    [Pg.278]    [Pg.117]    [Pg.101]    [Pg.238]    [Pg.165]    [Pg.37]    [Pg.561]    [Pg.228]    [Pg.542]    [Pg.1176]    [Pg.450]    [Pg.463]    [Pg.723]    [Pg.263]   
See also in sourсe #XX -- [ Pg.24 , Pg.400 ]




SEARCH



Dissolved metal

Dissolving metals

Metal determination

© 2024 chempedia.info