Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metals concept

Thiophene. Recent work in the authors laboratories has demonstrated that the directed metalation concept works well in substituted thiophenes once a certain limitation is realized—namely, that the 2,5-positions of thiophene are much more reactive toward metalation than are the 3,4-... [Pg.234]

This new theory of the non-equilibrium thermodynamics of multiphase polymer systems offers a better explanation of the conductivity breakthrough in polymer blends than the percolation theory, and the mesoscopic metal concept explains conductivity on the molecular level better than the exciton model based on semiconductors. It can also be used to explain other complex phenomena, such as the improvement in the impact strength of polymers due to dispersion of rubber particles, the increase in the viscosity of filled systems, or the formation of gels in colloids or microemulsions. It is thus possible to draw valuable conclusions and make forecasts for the industrial application of such systems. [Pg.501]

Soft acids complex in the opposite order. Compounds that complex with hard acids are hard bases ones that more readily form complexes with soft acids are called soft bases. In general, soft acids and bases are more easily polarized than hard acids and bases and consequently have more covalent character in the bond. The idea is an extension of the type A and B metals concept to compounds other than metal complexes. [Pg.400]

Reliability performance of new equipment profit from the innovative metal-ceramic concept. [Pg.537]

In this chapter, the foundations of equilibrium statistical mechanics are introduced and applied to ideal and weakly interacting systems. The coimection between statistical mechanics and thennodynamics is made by introducing ensemble methods. The role of mechanics, both quantum and classical, is described. In particular, the concept and use of the density of states is utilized. Applications are made to ideal quantum and classical gases, ideal gas of diatomic molecules, photons and the black body radiation, phonons in a hannonic solid, conduction electrons in metals and the Bose—Einstein condensation. Introductory aspects of the density... [Pg.435]

Clusters are intennediates bridging the properties of the atoms and the bulk. They can be viewed as novel molecules, but different from ordinary molecules, in that they can have various compositions and multiple shapes. Bare clusters are usually quite reactive and unstable against aggregation and have to be studied in vacuum or inert matrices. Interest in clusters comes from a wide range of fields. Clusters are used as models to investigate surface and bulk properties [2]. Since most catalysts are dispersed metal particles [3], isolated clusters provide ideal systems to understand catalytic mechanisms. The versatility of their shapes and compositions make clusters novel molecular systems to extend our concept of chemical bonding, stmcture and dynamics. Stable clusters or passivated clusters can be used as building blocks for new materials or new electronic devices [4] and this aspect has now led to a whole new direction of research into nanoparticles and quantum dots (see chapter C2.17). As the size of electronic devices approaches ever smaller dimensions [5], the new chemical and physical properties of clusters will be relevant to the future of the electronics industry. [Pg.2388]

In a generalized sense, acids are electron pair acceptors. They include both protic (Bronsted) acids and Lewis acids such as AlCb and BF3 that have an electron-deficient central metal atom. Consequently, there is a priori no difference between Bronsted (protic) and Lewis acids. In extending the concept of superacidity to Lewis acid halides, those stronger than anhydrous aluminum chloride (the most commonly used Friedel-Crafts acid) are considered super Lewis acids. These superacidic Lewis acids include such higher-valence fluorides as antimony, arsenic, tantalum, niobium, and bismuth pentafluorides. Superacidity encompasses both very strong Bronsted and Lewis acids and their conjugate acid systems. [Pg.98]

The concept of the reversed fuel cell, as shown schematically, consists of two parts. One is the already discussed direct oxidation fuel cell. The other consists of an electrochemical cell consisting of a membrane electrode assembly where the anode comprises Pt/C (or related) catalysts and the cathode, various metal catalysts on carbon. The membrane used is the new proton-conducting PEM-type membrane we developed, which minimizes crossover. [Pg.220]

There is hardly a metal that cannot, or has not, been joined by some welding process. From a practical standpoint, however, the range of alloy systems that may be welded is more restricted. The term weldability specifies the capacity of a metal, or combination of metals, to be welded under fabrication conditions into a suitable stmcture that provides satisfactory service. It is not a precisely defined concept, but encompasses a range of conditions, eg, base- and filler-metal combinations, type of process, procedures, surface conditions, and joint geometries of the base metals (12). A number of tests have been developed to measure weldabiHty. These tests generally are intended to determine the susceptibiHty of welds to cracking. [Pg.346]

The depressed prices of most metals in world markets in the 1980s and early 1990s have slowed the development of new metal extraction processes, although the search for improved extractants continues. There is a growing interest in the use of extraction for recovery of metals from effluent streams, for example the wastes from pickling plants and electroplating (qv) plants (276). Recovery of metals from Hquid effluent has been reviewed (277), and an AM-MAR concept for metal waste recovery has recentiy been reported (278). Possible appHcations exist in this area for Hquid membrane extraction (88) as weU as conventional extraction. Other schemes proposed for effluent treatment are a wetted fiber extraction process (279) and the use of two-phase aqueous extraction (280). [Pg.81]

Fracture mechanics is now quite weU estabHshed for metals, and a number of ASTM standards have been defined (4—6). For other materials, standardization efforts are underway (7,8). The techniques and procedures are being adapted from the metals Hterature. The concepts are appHcable to any material, provided the stmcture of the material can be treated as a continuum relative to the size-scale of the primary crack. There are many textbooks on the subject covering the appHcation of fracture mechanics to metals, polymers, and composites (9—15) (see Composite materials). [Pg.541]

Writing by Bubble Forming. Bubble formation occurs under thin metal layers on polymeric substrate films, caused by local evaporation when hit by a focused laser beam (see Fig. 3c). Bubble formation occurs as in the DIP concept in dye-in-polymer films which are covered by a thin metal (mostiy gold) or ceramic layer (6) (see Fig. 3d). [Pg.140]

Russian production may be going to a flow line cell concept (35). In this process, dehydrated camaOite is fed to a chamber where it is mixed with spent electrolyte coming from the electrolytic cells. The spent electrolyte first enters a metal collection chamber, where the molten magnesium is separated. The electrolyte is then enriched with camaOite and any iasoluble impurities are allowed to settle. The enriched electrolyte is then returned to the electrolytic cells. The result is that most of the remaining impurities are removed ia the first electrolytic cell. [Pg.319]

C. A. Siebert, D. V. Doane, and D. H. Breen, The Hardenability of Steels—Concepts, Metallurgical Influences andindustrialApplications, American Society for Metals, Metals Park, Ohio, 1977. [Pg.468]

Closed-Mill Concept. The closed-mill concept, or water circuit closure, has been studied by the pulp and paper industry for many years. In some parts of the paper manufacturing process, up to 98% of the water is recycled within the process, eg, the wet end of the paper machine. However, in the pulp mill, especiaUy kraft mills, effluents are produced owing to the need to purge from the system various metals that come in with the wood, as weU as organic by-products from the pulping process, additives, and especially chloride ions that originate in the bleach plant. [Pg.283]


See other pages where Metals concept is mentioned: [Pg.3]    [Pg.100]    [Pg.608]    [Pg.77]    [Pg.473]    [Pg.37]    [Pg.3]    [Pg.100]    [Pg.608]    [Pg.77]    [Pg.473]    [Pg.37]    [Pg.10]    [Pg.10]    [Pg.16]    [Pg.283]    [Pg.729]    [Pg.719]    [Pg.2392]    [Pg.2415]    [Pg.2422]    [Pg.2698]    [Pg.23]    [Pg.36]    [Pg.219]    [Pg.209]    [Pg.541]    [Pg.541]    [Pg.155]    [Pg.140]    [Pg.151]    [Pg.444]    [Pg.115]    [Pg.221]    [Pg.235]    [Pg.425]    [Pg.475]    [Pg.383]    [Pg.389]    [Pg.430]    [Pg.127]   


SEARCH



Central atom concepts metals

Central atom concepts molecular metals

Metal catalysis concepts

Metal-ligand interaction, concepts

Metals bases concept

New Concept for the Metal-Air Batteries Using Composites onducting PolymersExpanded Graphite as Catalysts

Supramolecular Construction of Chelating Bidentate Ligand Libraries through Hydrogen Bonding Concept and Applications in Homogeneous Metal Complex Catalysis

The Concept of Effective Overpotential Applied for Metal Electrodeposition Under an Imposed Magnetic Field

© 2024 chempedia.info