Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metals capacitance

As outlined above, electron transfer through the passive film can also be cmcial for passivation and thus for the corrosion behaviour of a metal. Therefore, interest has grown in studies of the electronic properties of passive films. Many passive films are of a semiconductive nature [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102 and 1031 and therefore can be investigated with teclmiques borrowed from semiconductor electrochemistry—most typically photoelectrochemistry and capacitance measurements of the Mott-Schottky type [104]. Generally it is found that many passive films cannot be described as ideal but rather as amorjDhous or highly defective semiconductors which often exlribit doping levels close to degeneracy [105]. [Pg.2726]

Multilayer Capacitors. Multilayer capacitors (MLC), at greater than 30 biUion units per year, outnumber any other ferroelectric device in production. Multilayer capacitors consist of alternating layers of dielectric material and metal electrodes, as shown in Figure 7. The reason for this configuration is miniaturization of the capacitor. Capacitance is given by... [Pg.206]

In nonmetaUic vessels, the second plate of the capacitor is missing and must be suppHed. A stiUweU probe, one with a concentric metal tube, is utilized. The concentric tube suppHes the second plate. StiUweU probes have numerous other uses. In appHcations of nonconductive media, a stiUweU probe is more sensitive and suppHes a greater amount of capacitance because the ground reference is so close to the probe. Further, if a tank waU offers a ground reference that is a varyiag distance to the probe, eg, a horizontal cylinder, the stiUweU offers a much more consistent (linear) ground reference. [Pg.210]

The Series 1151 differential pressure transmitter manufactured by Rosemount (MinneapoHs, Minnesota) uses a capacitance sensor in which capacitor plates are located on both sides of a stretched metal-sensing diaphragm. This diaphragm is displaced by an amount proportional to the differential process pressure, and the differential capacitance between the sensing diaphragm and the capacitor plates is converted electronically to a 4—20 m A d-c output. [Pg.213]

In some cases it is possible to form bridges of metal using air as the dielectric (150). However, if more than two levels of wiring are required then dielectric spacing is necessary. The ideal dielectric film has excellent adhesion and alow dielectric constant to minimize parasitic capacitances. The most common films include siUcon oxide, siUcon nitride, and a number of spin-on dielectrics (216). [Pg.384]

Even in the absence of Faradaic current, ie, in the case of an ideally polarizable electrode, changing the potential of the electrode causes a transient current to flow, charging the double layer. The metal may have an excess charge near its surface to balance the charge of the specifically adsorbed ions. These two planes of charge separated by a small distance are analogous to a capacitor. Thus the electrode is analogous to a double-layer capacitance in parallel with a kinetic resistance. [Pg.64]

The metallized film capacitors have the characteristic of self-healing. On a small dielectric failure the capacitor element is not rendered completely unserviceable. After clearing the fault, the affected capacitor element returns to the circuit and the capacitor unit functions normally. Only the punctured area is eliminated from the element and causes a negligibly small reduction in its capacitance value. Such a characteristic is termed self-healing and such capacitors are known as the self-healing type. [Pg.814]

From the experimental results and theoretical approaches we learn that even the simplest interface investigated in electrochemistry is still a very complicated system. To describe the structure of this interface we have to tackle several difficulties. It is a many-component system. Between the components there are different kinds of interactions. Some of them have a long range while others are short ranged but very strong. In addition, if the solution side can be treated by using classical statistical mechanics the description of the metal side requires the use of quantum methods. The main feature of the experimental quantities, e.g., differential capacitance, is their nonlinear dependence on the polarization of the electrode. There are such sophisticated phenomena as ionic solvation and electrostriction invoked in the attempts of interpretation of this nonlinear behavior [2]. [Pg.801]

S. Amokrane, J. P. Badiah. Analysis of the capacitance on the metal-solution interface role of the metal and metal-solvent couphng. In J. O M. Bockris,... [Pg.847]

Underground transmission lines are preferred in places where rights-of-way are severely limited because they can be placed much closer together than overhead lines. They are also favored for aesthetic reasons. They may be directly buried in the soil, buried in protective steel or plastic pipes, or placed in subterranean tunnels. The conductors are usually contained within plastic insulation encased in a thin metallic sheath. The conductors enclosed in steel pipes may be immersed in oil, which may be circulated for cooling purposes. For all types of underground lines, the capacitance is higher than for overhead lines, and the power transfer capability is usually limited by the resistive losses instead of the inductance. Wliile not exposed to environmental... [Pg.437]

An important point to be considered when the instrument is used for A.C. voltage measurement is the terminal connections. One terminal will be clearly designated as the high-potential connection, and this should be adhered to. The HT terminal will have a low value of capacitance to other bodies and to earth while the corresponding capacitance of the other is high. If the instrument is in a metallic case this should be connected to the mains earth as a safety precaution. In some cases, the low-voltage terminal is also connected to the metallic case. If this is so, the instrument will effectively earth the circuit under test, which may give rise to problems. [Pg.239]

Electrochemical tests This group includes the various electrochemical tests that have been proposed and used over the last fifty or so years. These tests include a number of techniques ranging from the measurement of potential-time curves, electrical resistance and capacitance to the more complex a.c. impedance methods. The various methods have been reviewed by Walter . As the complexity of the technique increases, i.e. in the above order, the data that are produced will provide more types of information for the metal-paint system. Thus, the impedance techniques can provide information on the water uptake, barrier action, damaged area and delamination of the coating as well as the corrosion rate and corroded area of the metal. However, it must be emphasised that the more comprehensive the technique the greater the difficulties that will arise in interpretation and in reproducibility. In fact, there is a school of thought that holds that d.c. methods are as reliable as a.c. methods. [Pg.1080]

In the second part of the 20th century, the tantalum capacitor industry became a major consumer of tantalum powder. Electrochemically produced tantalum powder, which is characterized by an inconsistent dendrite structure, does not meet the requirements of the tantalum capacitor industry and thus has never been used for this purpose. This is the reason that current production of tantalum powder is performed by sodium reduction of potassium fluorotantalate from molten systems that also contain alkali metal halides. The development of electronics that require smaller sizes and higher capacitances drove the tantalum powder industry to the production of purer and finer powder providing a higher specific charge — CV per gram. This trend initiated the vigorous and rapid development of a sodium reduction process. [Pg.8]


See other pages where Metals capacitance is mentioned: [Pg.326]    [Pg.18]    [Pg.66]    [Pg.326]    [Pg.326]    [Pg.18]    [Pg.66]    [Pg.326]    [Pg.203]    [Pg.313]    [Pg.209]    [Pg.25]    [Pg.26]    [Pg.434]    [Pg.347]    [Pg.328]    [Pg.331]    [Pg.131]    [Pg.564]    [Pg.45]    [Pg.45]    [Pg.46]    [Pg.51]    [Pg.52]    [Pg.55]    [Pg.56]    [Pg.58]    [Pg.59]    [Pg.77]    [Pg.137]    [Pg.141]    [Pg.141]    [Pg.153]    [Pg.153]    [Pg.195]    [Pg.112]    [Pg.1141]    [Pg.1150]    [Pg.171]    [Pg.312]    [Pg.431]    [Pg.1174]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Constant capacitance model metal adsorption

Metal double layer capacitance, determination

Metal semiconductor capacitance

Metal-oxide-semiconductor structures capacitance

© 2024 chempedia.info