Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metallic elements alkalis

Rubidium can be liquid at room temperature. It is a soft, silvery-white metallic element of the alkali group and is the second most electropositive and alkaline element. It ignites spontaneously in air and reacts violently in water, setting fire to the liberated hydrogen. As with other alkali metals, it forms amalgams with mercury and it alloys with gold, cesium, sodium, and potassium. It colors a flame yellowish violet. Rubidium metal can be prepared by reducing rubidium chloride with calcium, and by a number of other methods. It must be kept under a dry mineral oil or in a vacuum or inert atmosphere. [Pg.91]

Key properties are its flexibility, translucency, and resistance to all known chemicals except molten alkali metals, elemental fluorine and fluorine precursors at elevated temperatures, and concentrated perchloric acid. It withstands temperatures from —270° to 250°C and may be sterilized repeatedly by all known chemical and thermal methods. [Pg.1016]

Hydrogen reacts direcdy with a number of metallic elements to form hydrides (qv). The ionic or saline hydrides ate formed from the reaction of hydrogen with the alkali metals and with some of the alkaline-eartb metals. The saline hydrides ate salt-like in character and contain the hydride, ie,, ion. Saline hydrides form when pure metals and H2 react at elevated temperatures (300—700°C). Examples of these reactions ate... [Pg.417]

Metallic Antimonides. Numerous binary compounds of antimony with metallic elements are known. The most important of these are indium antimonide [1312-41 -0] InSb, gallium antimonide [12064-03-8] GaSb, and aluminum antimonide [25152-52-7] AlSb, which find extensive use as semiconductors. The alkali metal antimonides, such as lithium antimonide [12057-30-6] and sodium antimonide [12058-86-5] do not consist of simple ions. Rather, there is appreciable covalent bonding between the alkali metal and the Sb as well as between pairs of Na atoms. These compounds are useful for the preparation of organoantimony compounds, such as trimethylstibine [594-10-5] (CH2)2Sb, by reaction with an organohalogen compound. [Pg.202]

Since tire alkali and alkaline metals have such a high affinity for oxygen, sulphur aird selenium they are potentially useful for the removal of these iron-metallic elements from liquid metals with a lower affinity for these elements. Since the hairdling of these Group I and II elements is hazardous on the industrial scale, their production by molten salt electrolysis during metal rehning is an attractive alternative. Ward and Hoar (1961) obtained almost complete removal of sulphur, selenium and tellurium from liquid copper by the electrolysis of molten BaCla between tire metal which functioned as the cathode, and a graphite anode. [Pg.363]

Molten alkali metals, elemental fluorine, strong fluorinating agents... [Pg.58]

The Group 1 elements are soft, low-melting metals which crystallize with bee lattices. All are silvery-white except caesium which is golden yellow "- in fact, caesium is one of only three metallic elements which are intensely coloured, the other two being copper and gold (see also pp. 112, 1177, 1232). Lithium is harder than sodium but softer than lead. Atomic properties are summarized in Table 4.1 and general physical properties are in Table 4.2. Further physical properties of the alkali metals, together with a review of the chemical properties and industrial applications of the metals in the molten state are in ref. 11. [Pg.74]

The periodic table can help us decide what type of ion an element forms and what charge to expect the ion to have. Fuller details will be given in Chapter 2, but we can begin to see the patterns. One major pattern is that metallic elements— those toward the left of the periodic table—typically form cations by electron loss. Nonmetallic elements—those toward the right of the table—typically form anions by gaining electrons. Thus, the alkali metals form cations, and the halogens form anions. [Pg.50]

Beryllium, at the head of Group 2, resembles its diagonal neighbor aluminum in its chemical properties. It is the least metallic element of the group, and many of its compounds have properties commonly attributed to covalent bonding. Beryllium is amphoteric and reacts with both acids and alkalis. Like aluminum, beryllium reacts with water in the presence of sodium hydroxide the products are the beryl-late ion, Be(OH)42, and hydrogen ... [Pg.714]

Quaternary chalcogenides of the type A Ln M X, containing three metal elements from different blocks of the Periodic Table (A is an alkali or alkaline earth metal, Ln is an /-block lanthanide or scandium, M is a p-block main group or a r/-block transition metal, and X is S or Se) are also known [65]. [Pg.31]

Krebs, Robert E. The history and use of our earth s chemical elements a reference guide. Westport (CT) Greenwood P, 1998. ix, 346p. ISBN 0-313-30123-9 A short history of chemistry — Atomic structure The periodic table of the chemical elements — Alkali metals and alkali earth metals - Transition elements metals to nonmetals — Metallics and metalloids - Metalloids and nonmetals — Halogens and noble gases - Lanthanide series (rare-earth elements) — Actinide, transuranic, and transactinide series... [Pg.448]

Metal hydrides containing transition metal (TM)-hydrogen complexes, with the transition metal in a formally low oxidation state, are of fundamental interest for clarifying how an electron-rich metal atom can be stabilized without access to the conventional mechanism for relieving the electron density by back-donation to suitable ligand orbitals. By reacting electropositive alkali or alkaline earth metals ( -elements) with group 7, 8, 9, and 10 transition metals in... [Pg.645]

The six elements in the first column of the periodic chart, excluding hydrogen, make up Group I. They are called the alkali metals. Hydrogen is not a metal, probably because its atom is so small. The others all have a shiny luster, and they conduct electricity and heat well. Any element which has these properties is called a metal. The alkali metals are these ... [Pg.34]

Enthalt die Zusammensetzung Metall-Elemente, z. B. Natrium- Oder Kalium-Nitrat, Erdalkali- Oder Blei-Salze, so rechnet man (wiederum konventionell) alle Alkali-Anteile auf ihre Karbonate als Explosions-produkt, bei alien anderen Metallen nimmt man ihre Oxide als Reak-tionsprodukt an enthalt der Explosivstoff Chlor, so wird auf Chloride bzw. Chlorwasserstoff, bei Schwefel auf S02 gerechnet. [Pg.307]

The analysis of tetramethylammonium hydroxide (TMAH) solutions manufactured by SACHEM Inc. of Cleburne, Texas, includes the determination of trace elements. These elements cause less-than-optimum performance of integrated circuit boards manufactured by SACHEM s customers that use these solutions in their processes. Alkali and alkaline earth metals (e.g., Li, Na, K, Mg, Ca, and Ba) can reduce the oxide breakdown voltage of the devices. In addition, transition and heavy metal elements (e.g., Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ag, Au, and Pb) can produce higher dark current. Doping elements (e.g., B, Al, Si, P, As, and Sn) can alter the operating characteristics of the devices. In SACHEM s quality control laboratory, ICP coupled to mass spectrometry is used to simultaneously analyze multiple trace elements in one sample in just 1 to 4 min. This ICP-MS instrument is a state-of-the-art instrument that can provide high throughput and low detection Emits at the parts per thousand level. Trace elemental determination at the parts per thousand level must be performed in a clean room so that trace elemental contamination from airborne particles can be minimized. [Pg.292]

Wagman, D. D. Parker, V. P. Evans, W. H. Schumm, R. H. Bailey, S. "Selected Values of Thermodynamic Properties. Tables for the Alkali Metals (Elements 98 through 103 in the Standard Order of Arrangement)" Nat. Bur. Stand. [Pg.489]

By the early 1800s several chemists had separated potassium and sodium as elements from compounds. It was believed that metallic calcium could be obtained by similar methods. In 1808 Sir Humphry Davy finally produced the metallic element calcium from a mixture of lime and mercuric oxide by his experimental electrolysis apparatus. This was the same process he had previously used to discover several other alkali earth metals. [Pg.74]

Cerium is a grayish/iron-colored, very reactive metallic element that is attacked by both acids and alkalies. Pure cerium will ignite if scratched with a knife, but it can be combined safely with many other elements and materials. It is relatively soft and both malleable and ductile. [Pg.280]

The broader subject of the interaction of stable carbenes with main-group compounds has recently been reviewed. Accordingly, the following discussion focuses on metallic elements of the s and p blocks. Dimeric NHC-alkali adducts have been characterized for lithium, sodium, and potassium. For imidazolin-2-ylidenes, alkoxy-bridged lithium dimer 20 and a lithium-cyclopentadienyl derivative 21 have been reported. For tetrahydropyrimid-2-ylidenes, amido-bridged dimers 22 have been characterized for lithium, sodium, and potassium. Since one of the synthetic approaches to stable NHCs involves the deprotonation of imidazolium cations with alkali metal bases, the interactions of alkali metal cations with NHCs are considered to be important for understanding the solution behavior of NHCs. [Pg.8]

A number of useful properties of the Group 1 elements (alkali metals) are given in Table 8. They include ionization potentials and electron affinities Pauling, Allred-Rochow and Allen electronegativities ionic, covalent and van der Waals radii v steric parameters and polarizabilities. It should be noted that the ionic radii, ri, are a linear function of the molar volumes, Vm, and the a values. If they are used as parameters, they cannot distinguish between polarizability and ionic size. [Pg.293]

As a final example of a group of elements with similar properties, the metallic elements lithium, sodium, and potassium have such low densities that they float on water and are so highly reactive that they spontaneously burn by extracting oxygen from the water itself These light metals form strong alkalis and are appropriately called the alkali metals. You should locate each of these columns of similar elements, as shown in Figure 1-1, on the periodic table. [Pg.10]


See other pages where Metallic elements alkalis is mentioned: [Pg.125]    [Pg.56]    [Pg.76]    [Pg.541]    [Pg.305]    [Pg.129]    [Pg.105]    [Pg.337]    [Pg.77]    [Pg.95]    [Pg.4]    [Pg.235]    [Pg.134]    [Pg.237]    [Pg.504]    [Pg.433]    [Pg.363]    [Pg.59]    [Pg.68]    [Pg.185]    [Pg.125]    [Pg.146]    [Pg.582]    [Pg.159]    [Pg.36]    [Pg.289]   
See also in sourсe #XX -- [ Pg.147 , Pg.165 ]




SEARCH



Alkali elements

Alkali metal Elements of Group

Alkali metal individual elements

Alkali metal ions elements)

Alkali metals (Group elements

Elemental metallic

Elements alkali metals

Elements metals

Elements, metallic

Group 1 elements - the alkali metals

Group 1 elements alkali metal complexes

Main group elements alkali metals

Metallic elements metals

Metals elemental

The s-Block Elements Alkali and Alkaline Earth Metals

© 2024 chempedia.info