Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysts metal surfaces

Use Chemical polishing agent, protective coatings for metal surfaces, catalyst. [Pg.426]

An interesting observation was that the presence of metal surface catalysts for the hydrogen oxidation reaction appeared to have little effect upon performance. [Pg.209]

Vibrational Spectroscopy. Infrared absorption spectra may be obtained using convention IR or FTIR instrumentation the catalyst may be present as a compressed disk, allowing transmission spectroscopy. If the surface area is high, there can be enough chemisorbed species for their spectra to be recorded. This approach is widely used to follow actual catalyzed reactions see, for example. Refs. 26 (metal oxide catalysts) and 27 (zeolitic catalysts). Diffuse reflectance infrared reflection spectroscopy (DRIFT S) may be used on films [e.g.. Ref. 28—Si02 films on Mo(llO)]. Laser Raman spectroscopy (e.g.. Refs. 29, 30) and infrared emission spectroscopy may give greater detail [31]. [Pg.689]

Studies to determine the nature of intermediate species have been made on a variety of transition metals, and especially on Pt, with emphasis on the Pt(lll) surface. Techniques such as TPD (temperature-programmed desorption), SIMS, NEXAFS (see Table VIII-1) and RAIRS (reflection absorption infrared spectroscopy) have been used, as well as all kinds of isotopic labeling (see Refs. 286 and 289). On Pt(III) the surface is covered with C2H3, ethylidyne, tightly bound to a three-fold hollow site, see Fig. XVIII-25, and Ref. 290. A current mechanism is that of the figure, in which ethylidyne acts as a kind of surface catalyst, allowing surface H atoms to add to a second, perhaps physically adsorbed layer of ethylene this is, in effect, a kind of Eley-Rideal mechanism. [Pg.733]

The saturation coverage during chemisorption on a clean transition-metal surface is controlled by the fonnation of a chemical bond at a specific site [5] and not necessarily by the area of the molecule. In addition, in this case, the heat of chemisorption of the first monolayer is substantially higher than for the second and subsequent layers where adsorption is via weaker van der Waals interactions. Chemisorption is often usefLil for measuring the area of a specific component of a multi-component surface, for example, the area of small metal particles adsorbed onto a high-surface-area support [6], but not for measuring the total area of the sample. Surface areas measured using this method are specific to the molecule that chemisorbs on the surface. Carbon monoxide titration is therefore often used to define the number of sites available on a supported metal catalyst. In order to measure the total surface area, adsorbates must be selected that interact relatively weakly with the substrate so that the area occupied by each adsorbent is dominated by intennolecular interactions and the area occupied by each molecule is approximately defined by van der Waals radii. This... [Pg.1869]

Scholten J J and van Montfoort A 1962 The determination of the free-metal surface area of palladium catalysts J. Catal. 1 85-92... [Pg.1896]

XJsorption of gases on to transition metal surfaces is important, and transition metals or alloys are often used as heterogeneous catalysts. [Pg.369]

The molten salts quickly dissolve the metal oxides at high temperatures to form a clean metal surface. Other uses are as catalysts and in fire-retardant formulations (see Flame retardants). [Pg.167]

Fluorotitanic acid is used as a metal surface cleaning agent, as a catalyst, and as an aluminum finishing solvent (see Metal surface treatments). Fluorotitanates are used in abrasive grinding wheels and for incorporating titanium into aluminum aHoys (see Abrasives Aluminumand aluminum alloys). [Pg.255]

Glycohc acid [79-14-1], HOOCCH2OH, mol wt 76.05, can be obtained by the electrolytic reduction of oxaUc acid or the catalytic reduction of oxaUc acid with hydrogen in the presence of a mthenium catalyst. Because of its acidity it is used as a cleaning agent for metal surface treatments and for boiler cleaning. It also serves as an ingredient in cosmetics (qv). [Pg.463]

Biofilms can promote corrosion of fouled metal surfaces in a variety of ways. This is referred to as microbiaHy influenced corrosion. Microbes act as biological catalysts promoting conventional corrosion mechanisms the simple, passive presence of the biological deposit prevents corrosion inhibitors from reaching and passivating the fouled surface microbial reactions can accelerate ongoing corrosion reactions and microbial by-products can be directly aggressive to the metal. [Pg.272]

These siUca-supported catalysts demonstrate the close connections between catalysis in solutions and catalysis on surfaces, but they are not industrial catalysts. However, siUca is used as a support for chromium complexes, formed either from chromocene or chromium salts, that are industrial catalysts for polymerization of a-olefins (64,65). Supported chromium complex catalysts are used on an enormous scale in the manufacture of linear polyethylene in the Unipol and Phillips processes (see Olefin polymers). The exact stmctures of the surface species are still not known, but it is evident that there is a close analogy linking soluble and supported metal complex catalysts for olefin polymerization. [Pg.175]

Catalysis by Metals. Metals are among the most important and widely used industrial catalysts (69,70). They offer activities for a wide variety of reactions (Table 1). Atoms at the surfaces of bulk metals have reactivities and catalytic properties different from those of metals in metal complexes because they have different ligand surroundings. The surrounding bulk stabilizes surface metal atoms in a coordinatively unsaturated state that allows bonding of reactants. Thus metal surfaces offer an advantage over metal complexes, in which there is only restricted stabilization of coordinative... [Pg.175]

Electroless reactions must be autocatalytic. Some metals are autocatalytic, such as iron, in electroless nickel. The initial deposition site on other surfaces serves as a catalyst, usually palladium on noncatalytic metals or a palladium—tin mixture on dielectrics, which is a good hydrogenation catalyst (20,21). The catalyst is quickly covered by a monolayer of electroless metal film which as a fresh, continuously renewed clean metal surface continues to function as a dehydrogenation catalyst. Silver is a borderline material, being so weakly catalytic that only very thin films form unless the surface is repeatedly cataly2ed newly developed baths are truly autocatalytic (22). In contrast, electroless copper is relatively easy to maintain in an active state commercial film thicknesses vary from <0.25 to 35 p.m or more. [Pg.107]

The reaction is carried out over a supported metallic silver catalyst at 250—300°C and 1—2 MPa (10—20 bar). A few parts per million (ppm) of 1,2-dichloroethane are added to the ethylene to inhibit further oxidation to carbon dioxide and water. This results ia chlorine generation, which deactivates the surface of the catalyst. Chem Systems of the United States has developed a process that produces ethylene glycol monoacetate as an iatermediate, which on thermal decomposition yields ethylene oxide [75-21-8]. [Pg.433]

The proper method to remove the catalyst involves stabilization. The method for this is usually recommended by the catalyst manufacturer. With the reactor still closed, cold and flushed with nitrogen, admit nitrogen with less than 1 % oxygen in it, while the impeller is running. This oxidizes the organics and the metallic surface of the catalyst under well-controlled conditions after which the catalyst can be exposed to air without danger of overheating. [Pg.88]

Physical adsorption—surface areas of any stable solids, e.g., oxides used as catalyst supports and carbon black Chemisorption—measurements of particle sizes of metal powders, and of supported metals in catalysts... [Pg.56]

In this article, we will discuss the use of physical adsorption to determine the total surface areas of finely divided powders or solids, e.g., clay, carbon black, silica, inorganic pigments, polymers, alumina, and so forth. The use of chemisorption is confined to the measurements of metal surface areas of finely divided metals, such as powders, evaporated metal films, and those found in supported metal catalysts. [Pg.737]

The use of CO is complicated by the fact that two forms of adsorption—linear and bridged—have been shown by infrared (IR) spectroscopy to occur on most metal surfaces. For both forms, the molecule usually remains intact (i.e., no dissociation occurs). In the linear form the carbon end is attached to one metal atom, while in the bridged form it is attached to two metal atoms. Hence, if independent IR studies on an identical catalyst, identically reduced, show that all of the CO is either in the linear or the bricked form, then the measurement of CO isotherms can be used to determine metal dispersions. A metal for which CO cannot be used is nickel, due to the rapid formation of nickel carbonyl on clean nickel surfaces. Although CO has a relatively low boiling point, at vet) low metal concentrations (e.g., 0.1% Rh) the amount of CO adsorbed on the support can be as much as 25% of that on the metal a procedure has been developed to accurately correct for this. Also, CO dissociates on some metal surfaces (e.g., W and Mo), on which the method cannot be used. [Pg.741]


See other pages where Catalysts metal surfaces is mentioned: [Pg.4389]    [Pg.314]    [Pg.4389]    [Pg.314]    [Pg.938]    [Pg.2703]    [Pg.111]    [Pg.265]    [Pg.266]    [Pg.438]    [Pg.333]    [Pg.73]    [Pg.173]    [Pg.174]    [Pg.176]    [Pg.180]    [Pg.222]    [Pg.223]    [Pg.224]    [Pg.114]    [Pg.277]    [Pg.488]    [Pg.488]    [Pg.489]    [Pg.493]    [Pg.494]    [Pg.508]    [Pg.508]    [Pg.514]    [Pg.247]   
See also in sourсe #XX -- [ Pg.17 , Pg.357 , Pg.377 ]




SEARCH



Advanced Design of Catalyst Surfaces with Metal Complexes for Selective Catalysis

Bimetallic catalysts surface metal modifiers

Exploiting Surface Chemistry to Prepare Metal-Supported Catalysts by Organometallic Chemical Vapor Deposition

High Surface Area Metal Fluorides as Catalysts

Metal surface catalysts palladium

Metal surface catalysts platinum

Mixed metal catalysts surface composition

Preparation of Single Site Catalysts on Oxides and Metals Prepared via Surface Organometallic Chemistry

Spectroscopy as a Probe of Surface Electrochemistry at Metal Catalyst Particles

Supported metal catalysts Surface copper aluminate

Surface catalysts

Surface diffusion of oxygen species on supported metal catalysts

Surface of metal catalysts

Surface properties of mixed-metal catalysts

© 2024 chempedia.info