Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal surface catalysts platinum

Metals in the platinum family are recognized for their ability to promote combustion at lowtemperatures. Other catalysts include various oxides of copper, chromium, vanadium, nickel, and cobalt. These catalysts are subject to poisoning, particularly from halogens, halogen and sulfur compounds, zinc, arsenic, lead, mercury, and particulates. It is therefore important that catalyst surfaces be clean and active to ensure optimum performance. [Pg.2190]

Catalytic processes frequently require more than a single chemical function, and these bifunctional or polyfunctional materials innst be prepared in away to assure effective communication among the various constitnents. For example, naphtha reforming requires both an acidic function for isomerization and alkylation and a hydrogenation function for aromati-zation and saturation. The acidic function is often a promoted porous metal oxide (e.g., alumina) with a noble metal (e.g., platinum) deposited on its surface to provide the hydrogenation sites. To avoid separation problems, it is not unusual to attach homogeneous catalysts and even enzymes to solid surfaces for use in flow reactors. Although this technique works well in some environmental catalytic systems, such attachment sometimes modifies the catalytic specifici-... [Pg.227]

There is little data available to quantify these factors. The loss of catalyst surface area with high temperatures is well-known (136). One hundred hours of dry heat at 900°C are usually sufficient to reduce alumina surface area from 120 to 40 m2/g. Platinum crystallites can grow from 30 A to 600 A in diameter, and metal surface area declines from 20 m2/g to 1 m2/g. Crystal growth and microstructure changes are thermodynamically favored (137). Alumina can react with copper oxide and nickel oxide to form aluminates, with great loss of surface area and catalytic activity. The loss of metals by carbonyl formation and the loss of ruthenium by oxide formation have been mentioned before. [Pg.111]

Many organic electrode processes require the adsorption of the electroactive species at the electrode surface before the electron transfer can occur. This adsorption may take the form of physical or reversible chemical adsorption, as has been commonly observed at a mercury/water interface, or it may take the form of irreversible, dissociative chemical adsorption where bond fracture occurs during the adsorption process and often leads to the complete destruction of the molecule. This latter t q)e of adsorption is particularly prevalent at metals in the platinum group and accounts for their activity as heterogeneous catalysts and as... [Pg.165]

Among the various strategies [34] used for designing enantioselective heterogeneous catalysts, the modification of metal surfaces by chiral auxiliaries (modifiers) is an attractive concept. However, only two efficient and technically relevant enantioselective processes based on this principle have been reported so far the hydrogenation of functionalized p-ketoesters and 2-alkanons with nickel catalysts modified by tartaric acid [35], and the hydrogenation of a-ketoesters on platinum using cinchona alk oids [36] as chiral modifiers (scheme 1). [Pg.55]

Corrosion (spontaneous dissolution) of the catalyticaUy active material, and hence a decrease in the quantity present. Experience shows that contrary to widespread belief, marked corrosion occurs even with the platinum metals. For smooth platinum in sulfuric acid solutions at potentials of 0.9 to 1.0 V (RHE), the steady rate of self-dissolution corresponds to a current density of about 10 A/cm. Also, because of enhanced dissolution of ruthenium from the surface layer of platinum-ruthenium catalysts, their exceptional properties are gradually lost, and they are converted to ordinary, less active platinum catalysts. [Pg.551]

Methylcyclopentane is a powerful probe molecule for the study of metal surfaces. The product distribution on platinum depends on the following factors particle size 491 reaction conditions 492-494 carbonaceous residues,492,493,495 and the extent of the interface between the metal and the support.492,493,495 The hydrogenolysis rate of methylcyclopentane depends on the hydrogen pressure.496,497 The rate exhibits a maximal value as a function of hydrogen pressure on EuroPt catalysts.498 The hydrogenolysis of methylcyclopentane has also been studied over Pt-Ru bimetallic catalysts.499... [Pg.191]

There is a wealth of information available on CO chemisorption over single-crystal and polycrystalline platinum surfaces under ultrahigh-vacuum conditions research efforts in this area have gained a significant momentum with the advent of various surface analysis techniques (e.g., 2-8). In contrast, CO chemisorption on supported platinum catalysts (e.g., 9, 10, 11) is less well understood, due primarily to the inapplicability of most surface-sensitive techniques and to the difficulties involved in characterizing supported metal surfaces. In particular, the effects of transport resistances on the rates of adsorption and desorption over supported catalysts have rarely been studied. [Pg.79]

The mechanism of action, and organization of the catalytic sites, in hydrogenases are different from a solid catalyst such as platinum. For a start, the reaction of H2 with hydrogenase involves heterolytic cleavage into a hydron and a hydride. This contrasts with the reaction of H2 at the surface of a metal such as platinum, which is usually considered to involve the homolytic cleavage into two hydrogen atoms. Moreover in the enzyme, the catalyst is a cluster of metal ions (with oxidation states +2 or -h3) rather than the metal (oxidation state 0). [Pg.189]

In this paper we report the application of bimetallic catalysts which were prepared by consecutive reduction of a submonolayer of bismuth promoter onto the surface of platinum. The technique of modifying metal surfaces at controlled electrode potential with a monolayer or sub-monolayer of foreign metal ("underpotential" deposition) is widely used in electrocatalysis (77,72). Here we apply the theory of underpotential metal deposition without the use of a potentiostat. The catalyst potential during promotion was controlled by proper selection of the reducing agent (hydrogen), pH and metal ion concentration. [Pg.309]

For obvious reasons related to the necessary reduction of the amount of catalyst used in fuel cells, ORR has been studied on thin films of platinum deposited onto glassy carbon or titanium [73, 79] and on small metal particles on carbon [80-82]. The reduction of the Pt film thickness (<1 nm), as well as of the size of the particles (diam. < 3 nm), induces a moderate loss of activity attributed to differences in the adsorption of O2 on the metal surface. [Pg.135]


See other pages where Metal surface catalysts platinum is mentioned: [Pg.42]    [Pg.172]    [Pg.174]    [Pg.182]    [Pg.222]    [Pg.223]    [Pg.224]    [Pg.277]    [Pg.129]    [Pg.174]    [Pg.385]    [Pg.264]    [Pg.59]    [Pg.61]    [Pg.162]    [Pg.172]    [Pg.217]    [Pg.226]    [Pg.227]    [Pg.653]    [Pg.117]    [Pg.48]    [Pg.57]    [Pg.66]    [Pg.74]    [Pg.105]    [Pg.115]    [Pg.125]    [Pg.128]    [Pg.238]    [Pg.191]    [Pg.780]    [Pg.369]    [Pg.129]    [Pg.303]    [Pg.30]    [Pg.186]    [Pg.244]    [Pg.316]   
See also in sourсe #XX -- [ Pg.359 , Pg.360 , Pg.361 , Pg.362 ]




SEARCH



Metal platinum

Metal surface catalysts

Platinum surfaces

Surface catalysts

© 2024 chempedia.info