Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal species interphases

Interaction of Metal Species with Biological Interphases. 241... [Pg.206]

INTERACTION OF METAL SPECIES WITH BIOLOGICAL INTERPHASES... [Pg.241]

It is clear that the adsorption of species in the metal-solution interphase region needs a subtle analysis. The unraveling of the complex situation and the building up of a basic picture of the accumulation and depletion of species at an electrified interface is one of the principal achievements of the new electrochemistry and is largely due to the American electrochemist, Grahame. [Pg.126]

The vast majority of corrosion inhibitors in neutral environment as well as a number of acid corrosion inhibitors form protective 3D films on the metal surface ( interphase inhibition [4]). These films may consist of adsorbate multilayers, ox-ide/hydroxides, salts, or reaction products formed by interaction of the inhibitor with solution species on or near the corroding metal surface (e.g. dissolved metal ions). The type, structure, and thickness of the inhibiting films are strongly influenced by the environmental conditions. The interphase films act as a physical barrier that blocks or retards transport processes and the kinetics of the corrosion reactions at the metal surface. The inhibitive properties could, in some cases, be correlated with the chemical stability of the corresponding insoluble complexes as well as with the solubihty, adsorbabOity, and hydrophobicity of the inhibitor molecules [35]. Often, other ions from the electrolyte, such as... [Pg.450]

The Chapter by N. Garcia, V. Climent and J. Feliu provides a lucid and authoritative overview of the use of laser-pulsed induced temperature variations at the platinum single-ciystal/aqueous solution interphases and of the rigorous analysis of these experiments via Gibbs thermodynamics to extract new and very valuable information on the stracture and reactivity of the metal/solution interphase. The authors show how some key interfacial properties can be evaluated directly via this elegant analysis, such as the entropy of charge-transfer adsoibed species, the entropy of formation of the interfacial water network and the potential of water reorientation. [Pg.379]

These additives must thus be capable of decomposing under heat action by liberating the species that react with the moving metal or metals by creating an interphase more fusible than the metal itself. [Pg.363]

Under certain conditions, it will be impossible for the metal and the melt to come to equilibrium and continuous corrosion will occur (case 2) this is often the case when metals are in contact with molten salts in practice. There are two main possibilities first, the redox potential of the melt may be prevented from falling, either because it is in contact with an external oxidising environment (such as an air atmosphere) or because the conditions cause the products of its reduction to be continually removed (e.g. distillation of metallic sodium and condensation on to a colder part of the system) second, the electrode potential of the metal may be prevented from rising (for instance, if the corrosion product of the metal is volatile). In addition, equilibrium may not be possible when there is a temperature gradient in the system or when alloys are involved, but these cases will be considered in detail later. Rates of corrosion under conditions where equilibrium cannot be reached are controlled by diffusion and interphase mass transfer of oxidising species and/or corrosion products geometry of the system will be a determining factor. [Pg.439]

Vibrational spectroscopy techniques are quite suitable for in situ characterization of catalysts. Especially infrared spectroscopy has been used extensively for characterization of the electrode/solution interphases, adsorbed species and their dependence on the electrode potential.33,34 Raman spectroscopy has been used to a lesser extent in characterizing non-precious metal ORR catalysts, most of the studies being related to characterization of the carbon structures.35 A review of the challenges and applications associated with in situ Raman Spectroscopy at metal electrodes has been provided by Pettinger.36... [Pg.339]

Against simplistic views of the FIAM, it is necessary to stress that the model does not imply that the free metal ion is the only species available to the microorganism [2,14], Indeed, the internalisation flux (i.e. the rate of acquisition) depends on the free metal ion concentration at the biological interphase (which in the FIAM is practically cj ), but metal bound to a ligand in the solution can dissociate, can diffuse (under a negligible gradient according to the FIAM), and can eventually be taken up. [Pg.189]

The concept sounds attractive, but there is a flaw in the explanation. Assuming an equilibrium situation between the two bulk phases and the interphase, complex formation at the interfacial region requires the same complexes are formed also in the bulk phases. Consequently, in order to produce a considerable amount of the mixed species MA, xBx in the liquid-liquid boundary layer some B must be dissolved in the aqueous, as weU as some A in the organic phase. Since by definition this condition is not met, the relative amount of M present at the interphase region as MAn xBx must be negligible. However, now the metal ion will be distributed between MA in the aqueous phase and MBp in the organic layer (n and p are the... [Pg.140]

The surface tension was stated (Section 6.4.5), on general grounds, to be related to the surface excess of species in the interphase. The surface excess in turn represents in some way the structure of the interface. It follows therefore that electrocapillaiy curves must contain many interesting messages about the double layer at the electrode/ electrolyte interface. To understand such messages, one must learn to decode the electrocapillary data. It is necessary to derive quantitative relations among surface tension, excess charge on the metal, cell potential, surface excess, and solution composition. [Pg.136]

Thus, according to these theories, all univalent (1 1) electrolytes should behave the same way. However, this is not what was observed experimentally. Solutions of different 1 1 electrolytes (e.g., NaCl, NaBr, Nal, KI) show species-specific behavior. In order to interpret this specific behavior, Grahame (5) proposed a new model of the interphase the triple-layer model. The basic idea in the interpretation of the ion-specific behavior is that anions, when attracted into the interphase, may become dehydrated and thus get closer to the electrode. Each anion undergoes this to a different extent. This difference in the degree of dehydration and the difference in the size of ions results in the specific behavior of the anions. Ions that are partially or fully dehydrated are in contact with the electrode. This contact adsorption of ions allows short-range forces (e.g., electric image forces) to act between the metal elec-... [Pg.48]

Here, Ms and Ms,ads are the electrochemical potentials of S in the bulk solution and in the adsorbed state. Let us apply the Gibbs adsorption equation to the interphase between a pure metal M and an aqueous solution containing molecular and ionic species denoted by the subscript j, in addition to water w and the species S. Choosing the neutral metal atoms M and the electrons e in excess with respect to metal atoms as the constituents of the metal phase, we may formally write ... [Pg.308]

Figure 5.2 A schematic of the mechanism of the nanofilaments growth at catalytic pyrolysis of hydrocarbons. Hydrocarbon decomposition on the metal nanoparticle (the dark area) surface produces chemisorbed atomic carbon Cg species with a high chemical potential. In the (pseudo)fluidized catalyst particle, the atomic carbon is capable of diffusing through the metal nanoparticles toward the interphase boundary between the active component and the growing face of the carbon nanofiber (the light areas). Figure 5.2 A schematic of the mechanism of the nanofilaments growth at catalytic pyrolysis of hydrocarbons. Hydrocarbon decomposition on the metal nanoparticle (the dark area) surface produces chemisorbed atomic carbon Cg species with a high chemical potential. In the (pseudo)fluidized catalyst particle, the atomic carbon is capable of diffusing through the metal nanoparticles toward the interphase boundary between the active component and the growing face of the carbon nanofiber (the light areas).
The carbonylation of a benzyl halide in the presence of iron pentacarbonyl to give a phenylacetic acid may serve to exemplify the interaction of a metal carbonyl, carbon monoxide, PT catalyst, aqueous sodium hydroxide, and the substrate [79]. Fe(CO)5 is attacked by QOH at the interphase, and the species formed is extracted into the depths of the oganic phase, where it reacts with CO and benzyl halide (Eqs. 13 and 14). This new anion 3 is the actual catalyst. It reacts with a second benzyl halide to give a non-ionic intermediate 4 (Eq. 15). By insertion of CO and attack of QOH, 4 is decomposed to the reaction product under regeneration of 3 (Eq. 16). Thus, the action of the PT catalyst is twofold. Firstly it transports the metal carbonyl anion. More important seems to be its involvement in the (rate-determining) decomposition step. A basically similar mechanism was proposed for cobalt carbonyl reactions [80], which have been modified somewhat quite recently (see below). [Pg.283]


See other pages where Metal species interphases is mentioned: [Pg.51]    [Pg.298]    [Pg.435]    [Pg.3820]    [Pg.3821]    [Pg.895]    [Pg.295]    [Pg.333]    [Pg.68]    [Pg.1176]    [Pg.444]    [Pg.111]    [Pg.208]    [Pg.366]    [Pg.14]    [Pg.208]    [Pg.216]    [Pg.244]    [Pg.42]    [Pg.40]    [Pg.34]    [Pg.79]    [Pg.88]    [Pg.628]    [Pg.308]    [Pg.310]    [Pg.73]    [Pg.726]    [Pg.2]    [Pg.92]    [Pg.414]    [Pg.39]    [Pg.283]    [Pg.275]   
See also in sourсe #XX -- [ Pg.241 , Pg.242 , Pg.243 , Pg.244 ]




SEARCH



Interphase

Interphases

Metal species

Metallated species

© 2024 chempedia.info