Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Semiconductors and metals

An important class of molecule often described as clusters may better be referred to as micro-particles. This class includes metal, semiconductor and carbon clusters. Particularly interesting are the carbon clusters, C. ... [Pg.817]

Dielectric constants of metals, semiconductors and insulators can be detennined from ellipsometry measurements [38, 39]. Since the dielectric constant can vary depending on the way in which a fihn is grown, the measurement of accurate film thicknesses relies on having accurate values of the dielectric constant. One connnon procedure for detennining dielectric constants is by using a Kramers-Kronig analysis of spectroscopic reflectance data [39]. This method suffers from the series-tennination error as well as the difficulty of making corrections for the presence of overlayer contaminants. The ellipsometry method is for the most part free of both these sources of error and thus yields the most accurate values to date [39]. [Pg.1887]

Chemical and electrochemical techniques have been applied for the dimensionally controlled fabrication of a wide variety of materials, such as metals, semiconductors, and conductive polymers, within glass, oxide, and polymer matrices (e.g., [135-137]). Topologically complex structures like zeolites have been used also as 3D matrices [138, 139]. Quantum dots/wires of metals and semiconductors can be grown electrochemically in matrices bound on an electrode surface or being modified electrodes themselves. In these processes, the chemical stability of the template in the working environment, its electronic properties, the uniformity and minimal diameter of the pores, and the pore density are critical factors. Typical templates used in electrochemical synthesis are as follows ... [Pg.189]

Particularly attractive for numerous bioanalytical applications are colloidal metal (e.g., gold) and semiconductor quantum dot nanoparticles. The conductivity and catalytic properties of such systems have been employed for developing electrochemical gas sensors, electrochemical sensors based on molecular- or polymer-functionalized nanoparticle sensing interfaces, and for the construction of different biosensors including enzyme-based electrodes, immunosensors, and DNA sensors. Advances in the application of molecular and biomolecular functionalized metal, semiconductor, and magnetic particles for electroanalytical and bio-electroanalytical applications have been reviewed by Katz et al. [142]. [Pg.340]

SSMS can be classified among the milliprobe techniques (Figure 8.3), i.e. it is a unique link between microprobe techniques and macroanalytical methods that are characterised by poor lateral and in-depth resolutions (as in OES), or that have no lateral resolution whatsoever (as in NAA). Also, the achievable precision and accuracy are poor, because of the irreproducible behaviour of the r.f. spark. Whereas analysis of metals, semiconductors and minerals is relatively simple and the procedures have become standardised, the analysis of nonconducting materials is more complex and generally requires addition of a conducting powder (e.g. graphite) to the sample [359]. Detection limits are affected by the dilution, and trace contamination from the added components is possible. These problems can be overcome by the use of lasers [360]. Coupled with isotope dilution, a precision of 5% can be attained for SSMS. [Pg.651]

Charged polysaccharides can also serve as templates for the growth of metallic, semiconductor and magnetic nanoparticles. For instance, chitosan has been reported as a catalyst and stabilizing agent in the production of gold nanoparticles by the reduction oftetrachloroauric (III) acid by acetic acid. The biopolymer controls the size and the distribution of the synthesized Au nanoparticles and allows the preparation... [Pg.20]

The resistance thermometry is based on the temperature dependence of the electric resistance of metals, semiconductors and other resistive materials. This is the most diffused type of low-temperature thermometry sensors are usually commercial low-cost components. At very low temperatures, however, several drawbacks take place such as the low thermal conductivity in the bulk of the resistance and at the contact surface, the heating due to RF pick up and overheating (see Section 9.6.3)... [Pg.217]

With metals, semiconductors, and insulators as possible electrode materials, and solutions, molten salts, and solid electrolytes as ionic conductors, there is a fair number of different classes of electrochemical interfaces. However, not all of these are equally important The majority of contemporary electrochemical investigations is carried out at metal-solution or at semiconductor-solution interfaces. We shall focus on these two cases, and consider some of the others briefly. [Pg.4]

We shall briefly discuss the electrical properties of the metal oxides. Thermal conductivity, electrical conductivity, the Seebeck effect, and the Hall effect are some of the electron transport properties of solids that characterize the nature of the charge carriers. On the basis of electrical properties, the solid materials may be classified into metals, semiconductors, and insulators as shown in Figure 2.1. The range of electronic structures of oxides is very wide and hence they can be classified into two categories, nontransition metal oxides and transition metal oxides. In nontransition metal oxides, the cation valence orbitals are of s or p type, whereas the cation valence orbitals are of d type in transition metal oxides. A useful starting point in describing the structures of the metal oxides is the ionic model.5 Ionic crystals are formed between highly electropositive... [Pg.41]

Unlike metals, semiconductors and insulators have bound valence electrons. This aspect gives rise to inter band transitions. The objective of this and the next section is... [Pg.127]

This same equation is, of course, also used to rationalise the general electronic behaviour of metals, semiconductors and insulators. The quantitative application of Eqn (2.1) is handicapped for ionic conductors by the great difficulty in obtaining independent estimates of c,- and u,-. Hall effect measurements can be used with electronic conductors to provide a means of separating c, and u,- but the Hall voltages associated with ionic conduction are at the nanovolt level and are generally too small to measure with any confidence. Furthermore, the validity of Hall measurements on hopping conductors is in doubt. [Pg.10]

A large fraction of the material science research, and an important chapter of solid state physics are concerned with interfaces between solids, or between a solid and a two dimensional layer. Solid state electronics is based on metal-semiconductor and insulator-semiconductor junctions, but the recent developments bring the interface problem to an even bigger importance since band gap engineering is based on the stacking of quasi two dimensional semiconductor layers (quantum wells, one dimensional channels for charge transport). [Pg.97]

The problems that one can address with the SEXAFS tool while studying the growth and formation of metal/semiconductor and/or semiconductor/semiconductor interfaces are ... [Pg.97]

The Dependence of Resistance on Temperature for Metals, Semiconductors and Superconductors 104... [Pg.130]

The energy states of gaseous atoms split because of the overlap between electron clouds. Obviously, therefore, atoms must come much closer before the clouds of the core electrons begin to overlap compared with the distance at which the clouds of outer (or valence) electrons overlap (Fig. 6.119). Hence, at the equilibrium interatomic distances, the energy levels of the core electrons (in contrast to the valence electrons) do not show any band structure and therefore will be neglected in the following discussion. This simplified picture of the band theory of solids will now be used to explain the differences in conductivity of metals, semiconductors, and insulators. [Pg.270]

The conservation of energy and momentum is the fundamental requirement which determines the behavior of the SE s in metals, semiconductors, and ionic compounds irradiated by particles. Although we shall not deal with the basic physics of elementary collision processes in our context of chemical kinetics, let us briefly summarize some important results of collision dynamics which we need for the further discussion. If a particle of mass mP and (kinetic) energy EP collides with a SE of mass ms in a crystal, the fraction of EP which is transferred in this collision process to the SE is given by... [Pg.317]


See other pages where Semiconductors and metals is mentioned: [Pg.1697]    [Pg.1701]    [Pg.2209]    [Pg.158]    [Pg.236]    [Pg.356]    [Pg.38]    [Pg.224]    [Pg.503]    [Pg.32]    [Pg.157]    [Pg.648]    [Pg.384]    [Pg.25]    [Pg.26]    [Pg.461]    [Pg.116]    [Pg.296]    [Pg.230]    [Pg.120]    [Pg.28]    [Pg.152]    [Pg.215]    [Pg.83]    [Pg.195]    [Pg.202]    [Pg.219]    [Pg.322]    [Pg.192]    [Pg.204]    [Pg.42]    [Pg.1028]    [Pg.158]    [Pg.236]   
See also in sourсe #XX -- [ Pg.237 , Pg.238 , Pg.239 , Pg.240 , Pg.241 , Pg.242 , Pg.243 ]




SEARCH



Band structure of insulators, semiconductors and metals

Bonding in Solids Metals, Insulators, and Semiconductors

Bonding in metals and semiconductors

Bonding of transition metals and semiconductors

Electrical conduction in metals and semiconductors

Electrodeposition of Metals and Semiconductors

Empirical Potentials for Metals and Semiconductors

Escape-Energy Parameters for Metals and Semiconductors

Features of Metal and Semiconductor Nanoparticles

Insulators, Semiconductors and Metals

Measurement of Potentials at Semiconductor and Metal Particles Under Irradiation

Metal Oxides and Sulfides as Extrinsic Semiconductors

Metal and Semiconductor Surfaces in a Vacuum

Metal and semiconductor NPs

Nanofeatures on metals and semiconductors

Photoelectrolytic cells of metal and semiconductor electrodes

Plasma Etching of Refractory Metals and Semiconductors

Properties and Indiffusion of Metals at the Interfaces with Organic Semiconductors

Semiconductor metals

Semiconductors metallicity

The Liquid-Vapor Critical Point Data of Fluid Metals and Semiconductors

Thermal Conductivity of Metals and Semiconductors as a Function

Thermoelectric Properties of Metals and Semiconductors

© 2024 chempedia.info