Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal oxides/sulfides mesopores

Since the first synthesis of mesoporous materials MCM-41 at Mobile Coporation,1 most work carried out in this area has focused on the preparation, characterization and applications of silica-based compounds. Recently, the synthesis of metal oxide-based mesostructured materials has attracted research attention due to their catalytic, electric, magnetic and optical properties.2 5 Although metal sulfides have found widespread applications as semiconductors, electro-optical materials and catalysts, to just name a few, only a few attempts have been reported on the synthesis of metal sulfide-based mesostructured materials. Thus far, mesostructured tin sulfides have proven to be most synthetically accessible in aqueous solution at ambient temperatures.6-7 Physical property studies showed that such materials may have potential to be used as semiconducting liquid crystals in electro-optical displays and chemical sensing applications. In addition, mesostructured thiogermanates8-10 and zinc sulfide with textured mesoporosity after surfactant removal11 have been prepared under hydrothermal conditions. [Pg.383]

Meanwhile, SDA-mediated syntheses have also been used successfully in the preparation of nonsilica mesoporous metal oxides,54-60 metal sulfides,61 and metal phosphates.62,63 An account devoted to nonsiliceous mesoporous materials and the host-guest chemistry of such systems can be found in a review by Zhao and coworkers.64... [Pg.51]

Surfactant-based synthesis of mesoporous metal oxides and metal sulfides emerged about four years after the initial report of MCM-41 [21-36]. High surface area and thermally robust mesoporous metal oxides and sulfides represent a new class of materials with diverse opportunities for the development of improved fuel and solar cells, batteries, membranes, chemical delivery vehicles, heavy metal sponges, sensors, magnetic devices and new catalysts. All of these applications could benefit from tailorable Bronsted and Lewis acidity and basicity, flexible oxidation states, and tunable electronic, optical and magnetic properties. [Pg.42]

There have been only a few reports of mesostructured metal sulfides. Mesoporous cadmium sulfide was prepared from polyethylene oxide surfactants and cadmium salts exposed to hydrogen sulfide [35], A study of the effects of the counter-anion on the formation of CdS mesostructures led to the conclusion that the use of cadmium nitrate and perchlorate salts improved the degree of order of the mesostructure over the chloride, sulfate and acetate salts. This effect was attributed to the stronger acidity of conjugate acid by-products of the reaction in the case of nitrates that leads to the dissolution of high-energy defects and enhances structural order. [Pg.43]

Non-aqueous synthetic methods have recently been used to assemble mesoporous transition metal oxides and sulfides. This approach may afford greater control over the condensation-polymerization chemistry of precursor species and lead to enhanced surface area materials and well ordered structures [38, 39], For the first time, a rational synthesis of mesostructured metal germanium sulfides from the co-assembly of adamantanoid [Ge4S ()]4 cluster precursors was reported [38], Formamide was used as a solvent to co-assemble surfactant and adamantanoid clusters, while M2+/1+ transition metal ions were used to link the clusters (see Fig. 2.2). This produced exceptionally well-ordered mesostructured metal germanium sulfide materials, which could find application in detoxification of heavy metals, sensing of sulfurous vapors and the formation of semiconductor quantum anti-dot devices. [Pg.44]

The history of mesoporous material synthesis is unintentionally or intentionally duplicating the development of zeolites and microporous molecular sieve. It starts from silicate and aluminosilicate, through heteroatom substitution, to other oxide compounds and sulfides. It is worth mentioning that many unavailable compositions for zeolite (e.g., certain transition metal oxides, even pure metals and carbon) can be made in mesoporous material form. [Pg.471]

Ordered mesoporous materials, due to their periodic and size-controllable pore channels and high surface areas, have been regarded as a nano-reactor to construct novel ordered and well dispersed nanostructured composites with controlled size and size distribution.[303] A number of studies have reported on the encapsulation of guest materials, such as metal oxides,[304] semiconductors, metal sulfides,[305] carbon, metals,[306] and polymers into mesoporous silica hosts. [Pg.584]

The key property required of the inorganic species is ability to build up (polymerize) around the template molecules into a stable framework. As is already evident in this article, the most commonly used inorganic species are silicate ions, which yield a silica framework. The silica can be doped with a wide variety of other elements (heteroatoms), which are able to occupy positions within the framework. For example, addition of an aluminium source to the synthesis gel provides aluminosilicate ions and ultimately an aluminosilicate mesoporous molecular sieve. Other nonsilica metal oxides can also be used to construct stable mesoporous materials. These include alumina, zirconia, and titania. Metal oxide mesophases, of varying stability, have also been obtained from metals such as antimony (Sb), iron (Fe), zinc (Zn), lead (Pb), tungsten (W), molybdenum (M), niobium (Nb), tantalum (Ta), and manganese (Mn). The thermal stability, after template removal, and structural ordering of these mesostructured metal oxides, is far lower, however, than that of mesoporous silica. Other compositions that are possible include mesostructured metal sulfides (though these are unstable to template removal) and mesoporous metals (e.g., platinum, Pt). [Pg.228]

Ordered mesoporous materials of compositions other than silica or silica-alumina are also accessible. Employing the micelle templating route, several oxidic mesostructures have been made. Unfortunately, the pores of many such materials collapse upon template removal by calcination. The oxides in the pore walls are often not very well condensed or suffer from reciystallization of the oxides. In some cases, even changes of the oxidation state of the metals may play a role. Stabilization of the pore walls in post-synthesis results in a material that is rather stable toward calcination. By post-synthetic treatment with phosphoric acid, stable alumina, titania, and zirconia mesophases were obtained (see [27] and references therein). The phosphoric acid results in further condensation of the pore walls and the materials can be calcined with preservation of the pore system. Not only mesoporous oxidic materials but also phosphates, sulfides, and selenides can be obtained by surfactant templating. These materials have pore systems similar to OMS materials. [Pg.125]

The change of composition of mesoporous materials can be done by direct synthesis and post-synthesis modification. Now, the composition of mesoporous materials can be extended to nonsilica oxides, phosphates, sulfides, even metals. The study of nonsilica mesoporous materials started much later than that for silica-based materials. The main reasons include the hydrolysis and condensation reactions of transition metal precursors is difficult to control the inorganic wall easily crystallizes and results in the loss of mesostructures the synthetic procedure is difficult to repeat. [Pg.558]

All publications on mesoporous soHds with nanoparticles discussing optical properties can be generally divided into two large groups. The first group consists of works on different kinds of semiconductor particles (metal sulfides, selenides, oxides, etc.) where such particles are obtained in mesoporous solids and their UV-visible absorption and photoluminescence spectra are recorded. As a rule, these papers state the change of optical properties of nanoparticles compared to bulk, similar to semiconductor nanoparticles prepared in any... [Pg.81]

It is possible to oxidise and reduce atoms in the framework and also those within the pores of microporous (and mesoporous) solids of appropriate chemical compositions. Although pure aluminosilicate, silicate and aluminophosphate frameworks cannot be oxidised or reduced, transition metal and some lanthanide cations within the framework can exist in different oxidation states. Also, although typical alkali, alkali metal and most lanthanide cations in extraframework positions possess no redox chemistry, transition metal cations such as nickel, copper and platinum do. In the case of the transition metals, this enables them to become important catalysts. The included sulfide species in ultramarine-related pigments described above are also prepared through the reduction of sulfate species. [Pg.247]


See other pages where Metal oxides/sulfides mesopores is mentioned: [Pg.237]    [Pg.290]    [Pg.55]    [Pg.42]    [Pg.44]    [Pg.233]    [Pg.236]    [Pg.78]    [Pg.128]    [Pg.49]    [Pg.444]    [Pg.122]    [Pg.310]    [Pg.322]    [Pg.113]    [Pg.671]   
See also in sourсe #XX -- [ Pg.45 ]




SEARCH



Mesoporous oxides

Metal mesoporous

Metal sulfides

Metallated sulfides

Metallic sulfides

Oxides sulfides

Sulfided metals

Sulfides metallation

Sulfides oxidation

© 2024 chempedia.info