Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal oxides sintering

Metal powders Metal oxides Sintered metal reinforcement Mica Asbestos (obsolete) Sintered bronze matrix PTFE fibres... [Pg.213]

H. Bjorklund, L. K. Falk, K. Rundgren and J. Wasen, a-Si3N4 Grain Growth, Part I Effect of Metal Oxide Sintering Additives Journal of the European Ceramic Society, 17,1997,1285-1299. [Pg.796]

Surface heterogeneity is difficult to remove from crystalline inorganic substances, such as metal oxides, without causing large loss of surface areas by sintering. Thus in Fig. 2.14 in which the adsorbent was rutile (TiO ) all three adsorbates show a continuous diminution in the heat of adsorption as the surface coverage increases, but with an accelerated rate of fall as monolayer completion is approached. [Pg.59]

Inorganic membranes (29,36) are generaUy more stable than their polymeric counterparts. Mechanical property data have not been definitive for good comparisons. IndustriaUy, tube bundle and honeycomb constmctions predominate with surface areas 20 to 200 m. Cross-flow is generaUy the preferred mode of operation. Packing densities are greater than 1000 /m. Porous ceramics, sintered metal, and metal oxides on porous carbon support... [Pg.154]

The matte can be treated in different ways, depending on the copper content and on the desired product. In some cases, the copper content of the Bessemer matte is low enough to allow the material to be cast directly into sulfide anodes for electrolytic refining. Usually it is necessary first to separate the nickel and copper sulfides. The copper—nickel matte is cooled slowly for ca 4 d to faciUtate grain growth of mineral crystals of copper sulfide, nickel—sulfide, and a nickel—copper alloy. This matte is pulverized, the nickel and copper sulfides isolated by flotation, and the alloy extracted magnetically and refined electrolyticaHy. The nickel sulfide is cast into anodes for electrolysis or, more commonly, is roasted to nickel oxide and further reduced to metal for refining by electrolysis or by the carbonyl method. Alternatively, the nickel sulfide may be roasted to provide a nickel oxide sinter that is suitable for direct use by the steel industry. [Pg.3]

Uses. The sinter oxide form is used as charge nickel in the manufacture of alloy steels and stainless steels (see Steel). The oxide furnishes oxygen to the melt for decarburization and slagging. In 1993, >100, 000 metric tons of nickel contained in sinter oxide was shipped to the world s steel industry. Nickel oxide sinter is charged as a granular material to an electric furnace with steel scrap and ferrochrome the mixture is melted and blown with air to remove carbon as CO2. The melt is slagged, pouted into a ladle, the composition is adjusted, and the melt is cast into appropriate shapes. A modification of the use of sinter oxide is its injection directiy into the molten metal (33). [Pg.9]

Gases from the sintering process contain SO2, dust, and metal oxide fumes. The blast furnace gases contain similar particulates plus SO2 and CO. Table 30-10 indicates the expected SO2 emissions. [Pg.503]

Sintered and sprayed ceramic anodes have been developed for cathodic protection applications. The ceramic anodes are composed of a group of materials classified as ferrites with iron oxide as the principal component. The electrochemical properties of divalent metal oxide ferrites in the composition range 0- lA/O-0-9Fe2O3 where M represents a divalent metal, e.g. Mg, Zn, Mn, Co or Ni, have been examined by Wakabayashi and Akoi" . They found that nickel ferrite exhibited the lowest consumption rate in 3% NaCl (of 1 56 g A y at 500 Am and that an increase in the NiO content to 40mol 7o, i.e. O NiO-O-bFejO, reduced the dissolution rate to 0-4gA y at the expense of an increase in the material resistivity from 0-02 to 0-3 ohm cm. [Pg.179]

The halide is not the only metal compound used as source of metal. Metal oxides and sulfides are employed to prepare vanadium, chromium, iron and nickel borides in this way from sulfides at lower reaction T than those required by reaction sintering of the elements . [Pg.263]

As can be seen in table 1, with different preparation methods and active metals, the average size of the copper particle for the catalysts A and D were 20.3 nm and 50.0 nm. While those of the catalysts B and C were 51.3 nm and 45.4 run, respectively. CuO, non-supported metal oxide, made by impregnation is sintered and cluster whose particle size was 30 pm. The water-alcohol method provided more dispersed catalysts than the impregnation method. [Pg.302]

In Chapter 1 we emphasized that the properties of a heterogeneous catalyst surface are determined by its composition and structure on the atomic scale. Hence, from a fundamental point of view, the ultimate goal of catalyst characterization should be to examine the surface atom by atom under the reaction conditions under which the catalyst operates, i.e. in situ. However, a catalyst often consists of small particles of metal, oxide, or sulfide on a support material. Chemical promoters may have been added to the catalyst to optimize its activity and/or selectivity, and structural promoters may have been incorporated to improve the mechanical properties and stabilize the particles against sintering. As a result, a heterogeneous catalyst can be quite complex. Moreover, the state of the catalytic surface generally depends on the conditions under which it is used. [Pg.129]

CO Resistive sensors pellistors, metal-oxide sensors Optical sensors micro-spectrometer, IR-sources, IR-detectors, IR-filters Hybrid or integrated, surface micromachining Sn02 sintered thick film (Figaro, FIS,. ..), Sn02 thin and thick film on silicon (MiCS, Microsens) IR spectroscopy (Vaisala, Honeywell,. ..)... [Pg.223]


See other pages where Metal oxides sintering is mentioned: [Pg.334]    [Pg.334]    [Pg.249]    [Pg.334]    [Pg.334]    [Pg.249]    [Pg.36]    [Pg.56]    [Pg.578]    [Pg.313]    [Pg.503]    [Pg.2044]    [Pg.233]    [Pg.233]    [Pg.208]    [Pg.444]    [Pg.301]    [Pg.302]    [Pg.59]    [Pg.459]    [Pg.154]    [Pg.217]    [Pg.54]    [Pg.148]    [Pg.213]    [Pg.202]    [Pg.207]    [Pg.19]    [Pg.285]    [Pg.295]    [Pg.304]    [Pg.233]    [Pg.233]   


SEARCH



Metals sintered

Oxides sintered

Sintered metal oxides

Sintered metal oxides

Sintering of metal oxides

© 2024 chempedia.info