Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal hydrides aluminum hydride

Metal hydrides Calcium hydride, lithium aluminum hydride, sodium borohydride... [Pg.60]

Metal Hydrides. Metal hydrides can sometimes be used to prepare amines by reduction of various functional groups, but they are seldom the preferred method. Most metal hydrides do not reduce nitro compounds at all (64), although aliphatic nitro compounds can be reduced to amines with lithium aluminum hydride. When aromatic amines are reduced with this reagent, a2o compounds are produced. Nitriles, on the other hand, can be reduced to amines with lithium aluminum hydride or sodium borohydride under certain conditions. Other functional groups which can be reduced to amines using metal hydrides include amides, oximes, isocyanates, isothiocyanates, and a2ides (64). [Pg.263]

Water-reactive chemicals Store in dry, cool, location protect from water from fire sprinkler. Sodium metal, potassium metal, lithium metal, lithium aluminum hydride Separate from all aqueous solutions and oxidizers... [Pg.396]

Synthesis by high-dilution techniques requires slow admixture of reagents ( 8-24 hrs) or very large volumes of solvents 100 1/mmol). Fast reactions can also be carried out in suitable flow cells (J.L. Dye, 1973). High dilution conditions have been used in the dilactam formation from l,8-diamino-3,6-dioxaoctane and 3,6-dioxaoctanedioyl dichloride in benzene. The amide groups were reduced with lithium aluminum hydride, and a second cyclization with the same dichloride was then carried out. The new bicyclic compound was reduced with diborane. This ligand envelops metal ions completely and is therefore called a cryptand (B. Dietrich, 1969). [Pg.247]

For most laboratory scale reductions of aldehydes and ketones catalytic hydro genation has been replaced by methods based on metal hydride reducing agents The two most common reagents are sodium borohydride and lithium aluminum hydride... [Pg.628]

Reduction to alcohols (Section 15 2) Aide hydes are reduced to primary alcohols and ketones are reduced to secondary alcohols by a variety of reducing agents Catalytic hydrogenation over a metal catalyst and reduction with sodium borohydride or lithium aluminum hydride are general methods... [Pg.713]

Common catalyst compositions contain oxides or ionic forms of platinum, nickel, copper, cobalt, or palladium which are often present as mixtures of more than one metal. Metal hydrides, such as lithium aluminum hydride [16853-85-3] or sodium borohydride [16940-66-2] can also be used to reduce aldehydes. Depending on additional functionahties that may be present in the aldehyde molecule, specialized reducing reagents such as trimethoxyalurninum hydride or alkylboranes (less reactive and more selective) may be used. Other less industrially significant reduction procedures such as the Clemmensen reduction or the modified Wolff-Kishner reduction exist as well. [Pg.470]

Although a few simple hydrides were known before the twentieth century, the field of hydride chemistry did not become active until around the time of World War II. Commerce in hydrides began in 1937 when Metal Hydrides Inc. used calcium hydride [7789-78-8J, CaH2, to produce transition-metal powders. After World War II, lithium aluminum hydride [16853-85-3] LiAlH, and sodium borohydride [16940-66-2] NaBH, gained rapid acceptance in organic synthesis. Commercial appHcations of hydrides have continued to grow, such that hydrides have become important industrial chemicals manufactured and used on a large scale. [Pg.297]

Reactions. Although lithium aluminum hydride is best known as a nucleophilic reagent for organic reductions, it converts many metal haUdes to the corresponding hydride, eg, Ge, As, Sn, Sb, and Si (45). [Pg.305]

The speed of the reaction depends both on the metal and on the alcohol, increasing as electropositivity iacreases and decreasiag with length and branching of the chain. Thus sodium reacts strongly with ethanol, but slowly with tertiary butyl alcohol. The reaction with alkaU metals is sometimes carried out ia ether, ben2ene, or xylene. Some processes use the metal amalgam or hydride iastead of the free metal. Alkaline earth metals and aluminum are often covered with an oxide film which hinders the reaction. [Pg.24]

Other metal hydrides and metal alkoxides have been used as well as diphenylsilane and nickel—aluminum alloy (13). [Pg.420]

The reductions of chlorosilanes by lithium aluminum hydride, lithium hydride, and other metal hydrides, MH, offers the advantages of higher yield and purity as well as dexibiUty in producing a range of siUcon hydrides comparable to the range of siUcon haUdes (59). The general reaction is as follows ... [Pg.23]

The classical synthesis iavolves the dissolution of a 33% Sb—67% Zn alloy by hydrochloric acid the evolved gases contain up to 14% stibiae. A detailed procedure usiag a Sb—Mg alloy has also beea described (16). Aluminum hydride or alkaU metal borohydrides have been used to reduce antimony(III) ia acidic aqueous solutioa to produce stibiae. A 23.6% yield of stibiae, based oa the borohydride used, has beea reported (17). A 78% yield based oa Sb has beea obtaiaed by gradually adding a solutioa that is 0.4 Min SbCl and saturated ia NaQ, to aqueous NaBH at mol ratios of NaBH iSbQ. >10 (18). [Pg.202]

A critical issue is the stabiUty of the hydride electrode in the cell environment. A number of hydride formulations have been developed. Table 5 shows hydride materials that are now the focus of attention. Most of these are Misch metal hydrides containing additions of cobalt, aluminum, or manganese. The hydrides are prepared by making melts of the formulations and then grinding to fine powers. The electrodes are prepared by pasting and or pressing the powders into metal screens or felt. The additives are reported to retard the formation of passive oxide films on the hydrides. [Pg.562]

Oxygen-containing azoles are readily reduced, usually with ring scission. Only acyclic products have been reported from the reductions with complex metal hydrides of oxazoles (e.g. 209 210), isoxazoles (e.g. 211 212), benzoxazoles (e.g. 213 214) and benzoxazolinones (e.g. 215, 216->214). Reductions of 1,2,4-oxadiazoles always involve ring scission. Lithium aluminum hydride breaks the C—O bond in the ring Scheme 19) 76AHC(20)65>. [Pg.68]

The mesylate group, introduced with methanesulfonyl chloride, can be cleaved with lithium aluminum hydride and dissolving metal reduction (Na, /-BuOH, HMPT, NH3, 64% yield). ... [Pg.382]

The excess lithium aluminum hydride and the metallic complexes are decomposed by the careful addition of 82 ml. of distilled water, from a dropping funnel, to the well-stirred mixture. The reaction mixture is stirred for an additional 30 minutes, filtered with suction, and the solid is washed with several 100-ml. portions of ether. After the ether is removed from the filtrates, the residual oil is distilled under reduced pressure. The yield of laurylmethylamine, a colorless liquid boiling at 110-115°/1.2-1.5 mm., is 121-142 g. (81-95%) (Note 6). [Pg.49]

Lithium aluminum hydride Magnesium metal Nitric acid Oleum... [Pg.1027]

Kyba and eoworkers prepared the similar, but not identical compound, 26, using quite a different approach. In this synthesis, pentaphenylcyclopentaphosphine (22) is converted into benzotriphosphole (23) by reduction with potassium metal in THF, followed by treatment with o "t/20-dichlorobenzene. Lithium aluminum hydride reduction of 23 affords l,2-i>/s(phenylphosphino)benzene, 24. The secondary phosphine may be deprotonated with n-butyllithium and alkylated with 3-chlorobromopropane. The twoarmed bis-phosphine (25) which results may be treated with the dianion of 24 at high dilution to yield macrocycle 26. The overall yield of 26 is about 4%. The synthetic approach is illustrated in Eq. (6.16), below. [Pg.274]

A facile method for the stereospecific labeling of carbon atoms adjacent to an oxygenated position is the reductive opening of oxides. The stereospecificity of this reaction is due to virtually exclusive diaxial opening of steroidal oxides when treated with lithium aluminum hydride or deuteride. The resulting /ra/w-diaxial labeled alcohols are of high stereochemical and isotopic purity, with the latter property depending almost solely on the quality of the metal deuteride used. (For the preparation of m-labeled alcohols, see section V-D.)... [Pg.204]

The reduction of iminium salts can be achieved by a variety of methods. Some of the methods have been studied primarily on quaternary salts of aromatic bases, but the results can be extrapolated to simple iminium salts in most cases. The reagents available for reduction of iminium salts are sodium amalgam (52), sodium hydrosulfite (5i), potassium borohydride (54,55), sodium borohydride (56,57), lithium aluminum hydride (5 ), formic acid (59-63), H, and platinum oxide (47). The scope and mechanism of reduction of nitrogen heterocycles with complex metal hydrides has been recently reviewed (5,64), and will be presented here only briefly. [Pg.185]

Tertiary heterocyclic enamines are reduced with metals in acidic media 142) or electrolytically (237,238) and their salts are reduced with lithium aluminum hydride or sodium borohydride (239,240) to the corresponding saturated amines. [Pg.287]

The lithium aluminum hydride was obtained from Metal Hydrides Incorporated and was more than 95% pure. For calculation of the quantity of hydride required it was assumed that the purity was 95%. [Pg.18]

To achieve higher energy in solid proplnts the most notable advances were achieved with the addition of aluminum and beryllium to both double-base and composite proplnts. Energy in this case is commonly equated to high specific impulse. Later developments added aluminum hydride and beryllium hydride to this list. In Table 16, the specific impulse performance of proplnts using AP with various metals and hydrides is compared to those systems without these additives (Ref 43)... [Pg.890]

Remarkable solvent effects on the selective bond cleavage are observed in the reductive elimination of cis-stilbene episulfone by complex metal hydrides. When diethyl ether or [bis(2-methoxyethyl)]ether is used as the solvent, dibenzyl sulfone is formed along with cis-stilbene. However, no dibenzyl sulfone is produced when cis-stilbene episulfone is treated with lithium aluminum hydride in tetrahydrofuran at room temperature (equation 42). Elimination of phenylsulfonyl group by tri-n-butyltin hydride proceeds by a radical chain mechanism (equations 43 and 44). [Pg.772]


See other pages where Metal hydrides aluminum hydride is mentioned: [Pg.273]    [Pg.257]    [Pg.39]    [Pg.298]    [Pg.300]    [Pg.457]    [Pg.29]    [Pg.67]    [Pg.4]    [Pg.77]    [Pg.78]    [Pg.61]    [Pg.388]    [Pg.22]    [Pg.197]    [Pg.190]    [Pg.156]    [Pg.719]   


SEARCH



Aluminum metals

Lithium aluminum hydride metal salt systems

Metal hydrides aluminum halides

Metal hydrides lithium aluminum hydride

Metal-doped aluminum hydrides

Metallic aluminum

© 2024 chempedia.info