Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal hydrides lithium aluminum hydride

You will receive special instruction when it comes time to handle metallic sodium, lithium aluminum hydride, and sodium hydride, substances that can react explosively with water. [Pg.18]

Some very good but specialized and reactive drying agents are potassium hydroxide, anhydrous potassium carbonate, sodium metal, calcium hydride, lithium aluminum hydride, and phosphorus pentoxide. Substances that are essentially neutral and unreactive and are widely used as drying agents include anhydrous calcium sulfate (Drierite), magnesium sulfate, molecular sieves, calcium chloride, and sodium sulfate. [Pg.106]

The transfonnations of gm-dihalocyclopropanes are synthetically useful because the cyclopropanes are readily prepared by the addition of dihalocarbene to olefins. In most of dehalogenation reactions to monohalocyclopropanes, the reagents are limited to metallic reductants such as organotin hydride, lithium aluminum hydride, sodium borohydride, Grignard reagent, and zinc-copper couple [1-9]. A versatile method for the reduction of gm-dibromocyclopropanes 3 with an organic reductant is achieved by use of diethyl phosphonate (commercially named diethyl phosphite) and triethylamine to give the monobromocyclopropanes 4 (Scheme 2.2) [10]. [Pg.7]

Many methods of reduction from azide to amine are available hydrogen with various metal catalysts, lithium aluminum hydride, or cobalt(II) chloride/sodium borohydride. [Pg.349]

Synthesis by high-dilution techniques requires slow admixture of reagents ( 8-24 hrs) or very large volumes of solvents 100 1/mmol). Fast reactions can also be carried out in suitable flow cells (J.L. Dye, 1973). High dilution conditions have been used in the dilactam formation from l,8-diamino-3,6-dioxaoctane and 3,6-dioxaoctanedioyl dichloride in benzene. The amide groups were reduced with lithium aluminum hydride, and a second cyclization with the same dichloride was then carried out. The new bicyclic compound was reduced with diborane. This ligand envelops metal ions completely and is therefore called a cryptand (B. Dietrich, 1969). [Pg.247]

Reduction to alcohols (Section 15 2) Aide hydes are reduced to primary alcohols and ketones are reduced to secondary alcohols by a variety of reducing agents Catalytic hydrogenation over a metal catalyst and reduction with sodium borohydride or lithium aluminum hydride are general methods... [Pg.713]

Reactions. Although lithium aluminum hydride is best known as a nucleophilic reagent for organic reductions, it converts many metal haUdes to the corresponding hydride, eg, Ge, As, Sn, Sb, and Si (45). [Pg.305]

The reductions of chlorosilanes by lithium aluminum hydride, lithium hydride, and other metal hydrides, MH, offers the advantages of higher yield and purity as well as dexibiUty in producing a range of siUcon hydrides comparable to the range of siUcon haUdes (59). The general reaction is as follows ... [Pg.23]

The mesylate group, introduced with methanesulfonyl chloride, can be cleaved with lithium aluminum hydride and dissolving metal reduction (Na, /-BuOH, HMPT, NH3, 64% yield). ... [Pg.382]

The excess lithium aluminum hydride and the metallic complexes are decomposed by the careful addition of 82 ml. of distilled water, from a dropping funnel, to the well-stirred mixture. The reaction mixture is stirred for an additional 30 minutes, filtered with suction, and the solid is washed with several 100-ml. portions of ether. After the ether is removed from the filtrates, the residual oil is distilled under reduced pressure. The yield of laurylmethylamine, a colorless liquid boiling at 110-115°/1.2-1.5 mm., is 121-142 g. (81-95%) (Note 6). [Pg.49]

Lithium aluminum hydride Magnesium metal Nitric acid Oleum... [Pg.1027]

Kyba and eoworkers prepared the similar, but not identical compound, 26, using quite a different approach. In this synthesis, pentaphenylcyclopentaphosphine (22) is converted into benzotriphosphole (23) by reduction with potassium metal in THF, followed by treatment with o "t/20-dichlorobenzene. Lithium aluminum hydride reduction of 23 affords l,2-i>/s(phenylphosphino)benzene, 24. The secondary phosphine may be deprotonated with n-butyllithium and alkylated with 3-chlorobromopropane. The twoarmed bis-phosphine (25) which results may be treated with the dianion of 24 at high dilution to yield macrocycle 26. The overall yield of 26 is about 4%. The synthetic approach is illustrated in Eq. (6.16), below. [Pg.274]

A facile method for the stereospecific labeling of carbon atoms adjacent to an oxygenated position is the reductive opening of oxides. The stereospecificity of this reaction is due to virtually exclusive diaxial opening of steroidal oxides when treated with lithium aluminum hydride or deuteride. The resulting /ra/w-diaxial labeled alcohols are of high stereochemical and isotopic purity, with the latter property depending almost solely on the quality of the metal deuteride used. (For the preparation of m-labeled alcohols, see section V-D.)... [Pg.204]

The reduction of iminium salts can be achieved by a variety of methods. Some of the methods have been studied primarily on quaternary salts of aromatic bases, but the results can be extrapolated to simple iminium salts in most cases. The reagents available for reduction of iminium salts are sodium amalgam (52), sodium hydrosulfite (5i), potassium borohydride (54,55), sodium borohydride (56,57), lithium aluminum hydride (5 ), formic acid (59-63), H, and platinum oxide (47). The scope and mechanism of reduction of nitrogen heterocycles with complex metal hydrides has been recently reviewed (5,64), and will be presented here only briefly. [Pg.185]

Tertiary heterocyclic enamines are reduced with metals in acidic media 142) or electrolytically (237,238) and their salts are reduced with lithium aluminum hydride or sodium borohydride (239,240) to the corresponding saturated amines. [Pg.287]

The lithium aluminum hydride was obtained from Metal Hydrides Incorporated and was more than 95% pure. For calculation of the quantity of hydride required it was assumed that the purity was 95%. [Pg.18]

Azo, azoxy, and hydrazo compounds can all be reduced to amines. Metals (notably zinc) and acids, and Na2S204, are frequently used as reducing agents. Borane reduces azo compounds to amines, though it does not reduce nitro compounds. " Lithium aluminum hydride does not reduee hydrazo compounds or azo compounds, though with the latter, hydrazo compounds are sometimes isolated. With azoxy compounds, LiAHLj gives only azo compounds (19-48). [Pg.1559]

Dubois et al. [4] describe the synthesis of organophosphine dendrimers via the sequential addition of diethylvinyl phosphonate to primary phosphines followed by reduction with lithium aluminum hydride (Scheme 2). Metallation of... [Pg.90]

In the general context of donor/acceptor formulation, the carbonyl derivatives (especially ketones) are utilized as electron acceptors in a wide variety of reactions such as additions with Grignard reagents, alkyl metals, enolates (aldol condensation), hydroxide (Cannizzaro reaction), alkoxides (Meerwein-Pondorff-Verley reduction), thiolates, phenolates, etc. reduction to alcohols with lithium aluminum hydride, sodium borohydride, trialkyltin hydrides, etc. and cyloadditions with electron-rich olefins (Paterno-Buchi reaction), acetylenes, and dienes.46... [Pg.212]

Lithium aluminum hydride, LiAlH4 has been used as the reducing agent in the preparation of Cr(CO)6 from CrCl3. Reduction by metals such as Na, Mg, or A1 has also been used, as shown by the preparation of the V(CO)s ion ... [Pg.748]

In summary, many attempts have been made at achieving enantioselective reduction of ketones. Modified lithium aluminum hydride as well as the ox-azaborolidine approach have proved to be very successful. Asymmetric hydrogenation catalyzed by a chiral ligand-coordinated transition metal complex also gives good results. Figure 6-7 lists some of the most useful chiral compounds relevant to the enantioselective reduction of prochiral ketones, and interested readers may find the corresponding applications in a number of review articles.77,96,97... [Pg.372]

Sodium hydride dispersions in mineral oil and lithium aluminum hydride are available from Metal Hydrides, Inc. [Pg.126]

Reducing Agents Hydrogen, lithium aluminum hydride, sodium borohy-dride, di-isobutyl aluminum hydride, iron metal Acids Sulfuric acid, hydrochloric acid, phosphoric acid, methanesulfonic acid, acetic acid, formic acid... [Pg.335]

Complex aluminum and boron hydrides can contain other cations. The following compounds are prepared by metathetical reactions of lithium aluminum hydride or sodium borohydride with the appropriate salts of other metals sodium aluminum hydride [55], magnesium aluminum hydride [59], lithium borohydride [90], potassium borohydride [9i], calcium borohydride [92] and tetrabutylammonium borohydride [95]. [Pg.14]

Lithium aluminum hydride and alanes are frequently used for the preparation of hydrides of other metals. Diethylmagnesium is converted to magnesium hydride [777], trialkylchlorosilanes are transformed to trialkylsilanes... [Pg.15]

Another hydride, magnesium hydride prepared in situ from lithium aluminum hydride and diethylmagnesium, reduced terminal alkynes to 1-alkenes in 78-98% yields in the presence of cuprous iodide or cuprous r rt-butoxide, and 2-hexyne to pure cij-2-hexene in 80-81% yields [///]. Reduction of alkynes by lithium aluminum hydride in the presence of transition metals gave alkenes with small amounts of alkanes. Internal acetylenes were reduced predominantly but not exclusively to cis alkenes [377,378]. [Pg.44]


See other pages where Metal hydrides lithium aluminum hydride is mentioned: [Pg.382]    [Pg.107]    [Pg.100]    [Pg.300]    [Pg.67]    [Pg.77]    [Pg.78]    [Pg.22]    [Pg.197]    [Pg.190]    [Pg.156]    [Pg.223]    [Pg.248]    [Pg.419]    [Pg.895]    [Pg.217]    [Pg.43]    [Pg.86]    [Pg.210]    [Pg.434]    [Pg.195]    [Pg.44]   
See also in sourсe #XX -- [ Pg.633 ]




SEARCH



Aluminum metals

Lithium aluminum hydride metal salt systems

Lithium metal

Lithium metal hydrides

Metal hydrides aluminum hydride

Metal hydrides lithium hydride

Metallic aluminum

Metallic lithium

Metals lithium metal

© 2024 chempedia.info