Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal alkoxides preparation

Komiya, S., Taneichi, S., Yamamoto, A., Yamamoto, T. Transition metal alkoxides. Preparation and properties of bis(aryloxy)iron(ll) and bis(alkoxy)iron(ll) complexes having 2,2 -bipyridine ligands. Bull. Chem. Soc. Jpn. 1980, 53, 673-679. [Pg.694]

It is now reasonably well established that metal dialkylamides/bis(trimethylsilyl)-amides are valuable starting materials when the more conventional methods for metal alkoxide preparation fail. [Pg.41]

Besides pH, other preparative variables that can affect the microstructure of a gel, and consequendy, the properties of the dried and heat-treated product iaclude water content, solvent, precursor type and concentration, and temperature (9). Of these, water content has been studied most extensively because of its large effect on gelation and its relative ease of use as a preparative variable. In general, too Httie water (less than one mole per mole of metal alkoxide) prevents gelation and too much (more than the stoichiometric amount) leads to precipitation (3,9). Other than the amount of water used, the rate at which it is added offers another level of control over gel characteristics. [Pg.2]

Enolate Initiators. In principle, ester enolate anions should represent the ideal initiators for anionic polymeri2ation of alkyl methacrylates. Although general procedures have been developed for the preparation of a variety of alkaU metal enolate salts, many of these compounds are unstable except at low temperatures (67,102,103). Usehil initiating systems for acrylate polymeri2ation have been prepared from complexes of ester enolates with alkak metal alkoxides (104,105). [Pg.240]

From Alcoholysis and Transesteriflcation. Metal alkoxides of higher, unsaturated, or branched alcohols are difficult to prepare directiy and are usually made from lower metal alkoxides by means of alcoholysis ... [Pg.25]

The reaction is driven to completion by distilling the lower boiling alcohol. Metal methoxides are frequentiy insoluble and caimot be employed as starting materials in this reaction by the same token, they can be convenientiy prepared from solutions of higher alkoxides by precipitation with methanol. Alcoholysis also gives mixed metal alkoxides ... [Pg.25]

Double Alkoxides. Complex double alkoxides are formed when a solution of an alkaU or alkaline earth metal alkoxide is added to a solution of an alkoxide of aluminum, titanium, or tirconium and a series of such compounds have been prepared (44). [Pg.25]

An important use of dialkyl succinates is in the preparation of dialkyl succinyl succinates (35,53—56), which are intermediates in the manufacture of quinacridone pigments. The reaction is carried out in the presence of alkaU metal alkoxides (eq. 2). [Pg.535]

Titanium—Vanadium Mixed Metal Alkoxides. Titanium—vanadium mixed metal alkoxides, VO(OTi(OR)2)2, are prepared by reaction of titanates, eg, TYZOR TBT, with vanadium acetate ia a high boiling hydrocarbon solvent. The by-product butyl acetate is distilled off to yield a product useful as a catalyst for polymeri2iag olefins, dienes, styrenics, vinyl chloride, acrylate esters, and epoxides (159,160). [Pg.151]

Besides direct hydrolysis, heterometaHic oxoalkoxides may be produced by ester elimination from a mixture of a metal alkoxide and the acetate of another metal. In addition to their use in the preparation of ceramic materials, bimetallic oxoalkoxides having the general formula (RO) MOM OM(OR) where M is Ti or Al, is a bivalent metal (such as Mn, Co, Ni, and Zn), is 3 or 4, and R is Pr or Bu, are being evaluated as catalysts for polymerization of heterocychc monomers, such as lactones, oxiranes, and epoxides. An excellent review of metal oxoalkoxides has been pubUshed (571). [Pg.164]

Solution Deposition of Thin Films. Chemical methods of preparation may also be used for the fabrication of ceramic thin films (qv). MetaHo-organic precursors, notably metal alkoxides (see Alkoxides, metal) and metal carboxylates, are most frequently used for film preparation by sol-gel or metallo-organic decomposition (MOD) solution deposition processes (see Sol-GEL technology). These methods involve dissolution of the precursors in a mutual solvent control of solution characteristics such as viscosity and concentration, film deposition by spin-casting or dip-coating, and heat treatment to remove volatile organic species and induce crystaHhation of the as-deposited amorphous film into the desired stmcture. [Pg.346]

The alkoxides and aryloxides, particularly of yttrium have excited recent interest. This is because of their potential use in the production of electronic and ceramic materials,in particular high temperature superconductors, by the deposition of pure oxides (metallo-organic chemical vapour deposition, MOCVD). They are moisture sensitive but mostly polymeric and involatile and so attempts have been made to inhibit polymerization and produce the required volatility by using bulky alkoxide ligands. M(OR)3, R = 2,6-di-terr-butyl-4-methylphenoxide, are indeed 3-coordinate (pyramidal) monomers but still not sufficiently volatile. More success has been achieved with fluorinated alkoxides, prepared by reacting the parent alcohols with the metal tris-(bis-trimethylsilylamides) ... [Pg.951]

Zinc phthalocyanine (PcZn) is prepared from phthalonitrile in solvents with a boiling point higher than 200 C, e.g. quinoline277,278 or 1-bromonaphthalene,137 or without solvent in a melt of phthalonitrile.83,116 The zinc compound normally used is zinc(ll) acetate or zinc powder. The reaction of zinc(II) acetate with phthalic acid anhydride, urea and ammonium mo-lybdate(VI) is also successful.262 The metal insertion into a metal-free phthalocyanine is carried out in an alcohol (e.g.. butan-l-ol).127,141,290 This reaction can be catalyzed by an alkali metal alkoxide.112,129... [Pg.735]

Two kinds of solution were prepared in advance. Solution A was a water solution containing an Si source, which was obtained by hydrolyzing metal alkoxide (tetraethylorthosilicate, TEOS) with a dilute tetrapropylammoniumhydroxide (TPA-OH)/water solution at room temperature. The molar ratio of Si to the template was 3. In peparation of ZSM-S zeolite nanoerystals, aluminium isopropoxide as an A1 source and sodium chloride were added into solution A. Solution B was an oi mic solution containing surfectant Nonionie surfactants, poljraxyethylene (15) cxslylether (C-15), polyoxyethylene (15) nonylphenylether (NP-15), and polyoxyethylene (15) oleylether (O-15), and ionic surfoctnnts, sodium bis(2-ethylhexyl) sulfosucdnate (AOT) and... [Pg.185]

A previous method [1] of preparing 3,3-dimethylbutyne by dehydrochlorination of the title compound in a sodium hydroxide melt is difficult to control and hazardous on the large scale. Use of potassium ferf-butoxide as base in DMSO is a high-yielding, safe and convenient alternative method of preparation of the alkyne [2], See Dimethyl sulfoxide Metal alkoxides See other HALOALKANES... [Pg.813]

A combination of DAT and a metal alkoxide other than titanium alkoxide serves as a poor catalyst for the epoxidation of allylic alcohols. However, the combination of DAT and silica-supported tantalum alkoxides (2a) and (2b) prepared from Ta(=CHCMe3)(CH2Cme3)3 and silica(5oo) shows high enantioselectivity in the epoxidation of E-allylic alcohols, though chemical yields are not very great (Scheme 4).3... [Pg.210]

Fig. 5.18 Schematic and TEM image of reaction scheme to prepare metal nanoparticles encapsulated within metal oxide coating on oxidized MWCNTs. Metal NPs are added to developing metal alkoxide sol followed by addition of oxidized MWCNTs and water for hydrolysis. Adapted with permission from [228], (2012) American Chemical Society. Fig. 5.18 Schematic and TEM image of reaction scheme to prepare metal nanoparticles encapsulated within metal oxide coating on oxidized MWCNTs. Metal NPs are added to developing metal alkoxide sol followed by addition of oxidized MWCNTs and water for hydrolysis. Adapted with permission from [228], (2012) American Chemical Society.
Miyafuji, H., Saka, S. and Yamamoto, A. (1998). Si02-P205-B203 wood-inorganic composites prepared by metal alkoxides ohgomers and their fire-resisting properties. Holzforschung, 52(4), 410-416. [Pg.217]

Silica-based monolithic columns (Figure 9) are generally prepared using sol-gel technology. This involves the preparation of a sol solution and the gelation of the sol to form a network in a continuous liquid phase within the capillary. The precursors for the synthesis of these monoliths are normally metal alkoxides that react readily with water. The most widely used are alkoxysilanes such as tetramethoxysilane (TMOS) and TEOS. [Pg.454]

Carbamylguanamines (CXIV) may be prepared from biguanides and ester amides of dibasic acids in the usual manner (709), preferably in the presence of metal alkoxide. The rather difficultly accessible ester amides may be replaced by the more readily available imides of the dibasic acids (454). [Pg.56]


See other pages where Metal alkoxides preparation is mentioned: [Pg.637]    [Pg.29]    [Pg.637]    [Pg.29]    [Pg.2]    [Pg.3]    [Pg.38]    [Pg.334]    [Pg.534]    [Pg.296]    [Pg.59]    [Pg.52]    [Pg.418]    [Pg.226]    [Pg.345]    [Pg.346]    [Pg.423]    [Pg.31]    [Pg.47]    [Pg.536]    [Pg.326]    [Pg.606]    [Pg.177]    [Pg.296]    [Pg.415]    [Pg.132]    [Pg.146]    [Pg.146]    [Pg.7]    [Pg.44]    [Pg.6]    [Pg.167]    [Pg.203]   
See also in sourсe #XX -- [ Pg.260 , Pg.261 , Pg.262 ]




SEARCH



Alkoxides preparation

Metal alkoxide

Metal alkoxides

Metal preparation

© 2024 chempedia.info