Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mesophases thermotropic liquid crystals

The prime requirement for the formation of a thermotropic liquid crystal is an anisotropy in the molecular shape. It is to be expected, therefore, that disc-like molecules as well as rod-like molecules should exhibit liquid crystal behaviour. Indeed this possibility was appreciated many years ago by Vorlander [56] although it was not until relatively recently that the first examples of discotic liquid crystals were reported by Chandrasekhar et al. [57]. It is now recognised that discotic molecules can form a variety of columnar mesophases as well as nematic and chiral nematic phases [58]. [Pg.93]

The mesophases of thermotropic liquid crystals are described as calamitic if the constituent molecules are rod-like and columnar, if the constituent molecules, which often have a disc like shape(discotic), stack into columns. [Pg.268]

The family of primary silver thiolate compounds AgSC H2n+1 ( = 4, 6, 8, 10, 12, 16, or 18), which in the solid state consists of 2x,[AgSR] layers, behaves as thermotropic liquid crystals. On heating, they display successively lamellar (smectic A), cubic, and micellar mesophases.969... [Pg.960]

Thermotropic liquid crystals, 15 86-98 bent-core, 15 98 discotic phases of, 15 96 frustrated phases of, 15 94-96 metallomesogens, 15 97 nematic liquid crystals, 15 86-92 smectic liquid crystals, 15 92-94 Thermotropic mesophases, 20 79 Thermotropic polycarbonates, 19 804 Thermotropic polyesters, liquid-crystalline, 20 34... [Pg.944]

Starting with the crystalline state, the mesophase is reached by increasing the temperature or by adding a solvent. Accordingly, a differentiation can be made between thermotropic and lyotropic liquid crystals, respectively. As with thermotropic liquid crystals, a variation of the temperature can also cause a phase transformation between different mesophases with lyotropic liquid crystals. [Pg.117]

The smectic mesophases of the thermotropic liquid crystals show a variety of textures but resemble mainly the fan-shape texture of the lyotropic hexagonal meso-phase. For further reading more comprehensive literature is recommended [11]. [Pg.125]

The molecular structure of arsphenamin is a typical representative of a thermotropic mesogen. With its symmetrical arrangement of the atoms the same holds for disodium cromoglycate, DNCG [20], which forms both thermotropic liquid crystals and lyotropic mesophases in the presence of water. Micronized DNCG powder applied to the mucosa of the nose or the bronchi absorbs water from the high relative humidity of the respiration tract and is first transformed into a lyotropic mesophase and then into a solution depending on the amount of water available. [Pg.134]

The mesogenic structures of glycolipids are due to the occurrence, on the same molecule, of a hydrophilic and a hydrophobic moiety often referred to as head and tail respectively. As a result, glycolipids are able to self-organize into a large variety of mesophases also called liquid crystals (Fig. 2) [ 10]. Supramolecular assemblies of mesogenic compounds can be caused by a rise in temperature (thermotropic liquid crystals) or by the addition of water (lyotropic liquid crystals) they result from different responses of the carbohydrate and the alkyl chain to temperature or solvent (water), respectively. [Pg.279]

When they are heated, mesogenic compounds do not melt directly from the highly ordered crystalline state to an isotropic liquid. They form instead, intermediate phases in which the molecules are orientated in a parallel direction and referred to as smectic (centers of the molecules organized in layers) or nematic (centers of the molecules distributed at random). Smectic and nematic mesophases are in turn divided into a variety of subgroups of thermotropic liquid crystals which will not be dealt with in detail in the present article. [Pg.279]

Melting point the temperature at which a thermotropic liquid crystal passes from the solid to the mesophase (or to an isotropic liquid). [Pg.404]

Thermotropic liquid crystals are divided into two principal types, by considering the shape of the units forming the mesophase (Figure 7.1) ... [Pg.404]

Mesophases Induced by Association of Complementary Molecular Components. A common type of molecular species that form thermotropic liquid crystals possesses an axial rigid core fitted with flexible chains at each end. One may then imagine splitting the central core into two complementary halves e and 3, whose association would generate the mesogenic supermolecule, as schematically represented in Figure 38. [Pg.166]

Liquid crystalsare an intermediate state in which the molecules in a crystal can undergo a secondary phase transition to a mesophase, which gives them mobility in 1-2 directions. They are birefringent, but possess low properties like a liquid phase. Lyotropic liquid crystals form on uptake of water into a system that increases its mobility, and thermotropic liquid crystals can be disrupted by heating above a transition temperature. Cromolyn sodium (Cox et al., 1971), the HMG-CoA reductase inhibitor SQ33600 (Brittain et al., 1995), and the leukotriefienffagonist L-660,711 (Vadas et al., 1991) are examples of pharmaceuticals that can form liquid crystals. [Pg.535]

One of the most classic examples of chiral expression in thermotropic liquid crystals is that of the stereospecific formation of helical fibres by di-astereomers of tartaric acid derivatised either with uracil or 2,6-diacylamino pyridine (Fig. 9) [88]. Upon mixing the complementary components, which are not liquid crystals in their pure state, mesophases form which exist over very broad temperature ranges, whose magnitude depend on whether the tartaric acid core is either d, l or meso [89]. Electron microscopy studies of samples deposited from chloroform solutions showed that aggregates formed by combination of the meso compounds gave no discernable texture, while those formed by combinations of the d or l components produced fibres of a determined handedness [90]. The observation of these fibres and their dimensions makes it possible that the structural hypothesis drawn schematically in Fig. 9 is valid. This example shows elegantly the transfer of chirality from the molecular to the supramolecular level in the nanometer to micrometer regime. [Pg.266]

A thermotropic liquid crystal (mcsogen) is a compound that, on heating the crystal or on cooling the isotropic liquid, gives rise to mesomorphism. Liquid crystallinity occurs between the crystal and isotropic liquid states. The intermediate phases, or mesophases, can be either enantiotropic, i.e., thermodynamically stable, or monotropic, i.e., thermodynamically unstable. The solid to mesophase transition is referred to as the melting point, while the mesophase to isotropic liquid transition is referred to as the clearing point. [Pg.472]

The smectic mesophases of the thermotropic liquid crystals show a variety of textures but resemble the... [Pg.1119]

The arrangement of chiral molecules in thermotropic liquid crystals is more complex, since entire volumes of space - rather than the bounded twisted ribbons discussed above - must be ed subject the constraint of a preferred twist between neighbouring molecules. The simplest examples of such mesophases are the cholesteric liquid crystals, discovered last century, (c/. section 5.1.8). This class of thermotropic liquid crystals derives its generic name from chiral cholesterol derivatives (shown below), which were found a century ago to exhibit peculiar optical changes as they were heated. [Pg.189]

Liquid crystal phases, or mesophases, are characterized by a partial order, intermediate between the full orientational and translational disorder of the isotropic liquid phase and the full orientational and translational order of the crystalline phase. Thermotropic liquid-crystal phases are obtained for a given compound (or possibly a mixture) as a function of temperature, while the so-called lyotropic liquid-crystal phases are obtained as a function of the concentration of a given solute in a solvent Typical examples of the latter systems are the various types of aggregates formed by amphiphilic molecules either in water or in organic solvents. In this chapter we will be interested only in thermotropic systems. An interesting review on lyotropic ionic liquid crystals can be found in Ref. [2],... [Pg.80]

Thermotropic liquid crystals can then be furflier subdivided into high molecular mass, main and side-chain polymers [10] and low molecular mass, the latter class of compounds being one of the areas of this review. The phases exhibited by the low molecular mass molecules are then properly described with reference to the symmetry and/or supramolecular geometry of the phases, which are briefly introduced here and are discussed in more detail further below. Thus, the most disordered mesophase is the nematic (N), which is found for calamitic molecules (N), discoidal molecules (Nq) and columnar aggregates (Nc), among others. The more ordered lamellar or smectic phases (S) [11, 12] are commonly shown by calamitic molecules, and there exists a variety of such phases distinguished by a subscripted letter (e. g. Sa, Sb)- Columnar phases (often, if incorrectly, referred to as discotic phases) may be formed from stacks of disc-like molecules, or from... [Pg.286]

Liquid crystalline phases can show not only long-range orientational order as nematic phases do but also long-range positional order. When this positional order is one-dimensional, the mesophase is called lamellar or smectic when it is two-dimensional, it is called columnar. The latter case is often found with thermotropic liquid-crystal disk-like molecules. Such molecules stack in columns that assemble on a 2-D lattice of hexagonal, rectangular, or oblique symmetry. The molecules in a given column only show 1-D liquid-Hke order and the uncorrelated columns are free to slide past each other, which ensures the mesophase fluidity [73]. [Pg.147]

Liquid crystals combine properties of both liquids (fluidity) and crystals (long range order in one, two, or three dimensions). Examples of liquid crystalline templates formed by amphiphiles are lyotropic mesophases, block copolymer mesophases, and polyelectrolyte-suxfactant complexes. Their morphological complexity enables the template synthesis of particles as well as of bulk materials with isotropic or anisotropic morphologies, depending on whether the polymerization is performed in a continuous or a discontinuous phase. As the templating of thermotropic liquid crystals is already described in other reviews [47] the focus here is the template synthesis of organic materials in lyotropic mesophases. [Pg.213]


See other pages where Mesophases thermotropic liquid crystals is mentioned: [Pg.388]    [Pg.388]    [Pg.6]    [Pg.526]    [Pg.268]    [Pg.60]    [Pg.28]    [Pg.407]    [Pg.293]    [Pg.425]    [Pg.202]    [Pg.179]    [Pg.49]    [Pg.71]    [Pg.188]    [Pg.180]    [Pg.286]    [Pg.64]    [Pg.2]    [Pg.327]    [Pg.252]    [Pg.274]   
See also in sourсe #XX -- [ Pg.142 ]




SEARCH



Cholesteric mesophase, thermotropic liquid crystals

Columnar mesophases thermotropic liquid crystals, nematic discotic

Crystal-mesophase

Crystallization mesophases

Discotic liquid crystals thermotropic mesophase

Liquid crystals mesophases

Liquid mesophases

Liquid thermotropic

Mesophase

Mesophase crystallization

Mesophases

Nematic discotic mesophase thermotropic liquid crystals

Thermotropic liquid crystals

Thermotropic liquid crystals discotic mesogen mesophases

Thermotropic mesophase

Thermotropism

© 2024 chempedia.info