Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cholesterol, chirality

Cholesteric liquid crystals Historically, the name is derived from cholesterol chiral molecules like the steroids show a certain form of the nematic phase, the cholesteric one. The rigid rods are oriented parallel within virtual layers in one preferred direction (director) the director changes from one single virtual layer to the next continuously, with a certain value creating a helix. The distance between two parallel oriented directors is called the pitch (ca 0.2 pm). [Pg.426]

In most cases, the addition of a rod-shaped molecule to a crown ether leads to the formation of a nematic phase. In the case of addition of a chiral unit, such as cholesterol, chiral nematic phases can be observed. Some molecules can also show smectic phases when the attached rod shaped unit is long and inflexible. [Pg.123]

Chiral centers, more than one, lljf Chiral stereomer, 69 Cholesterol, chirality in, 81 Cinnamaldehyde, 328 Cis-trans interconversion, 111 Cis-trans isomerism, in cyclic compounds, 163 Claisen condensation, 394 rearrangement, 439 Cleavage, oxidative, 117 Clemmensen reduction, 219, 311 Coenzyme A, 354 Collins reagent, 264 Collision frequency, 39 Configuration, 72 relative, 76 Conformation, 51 Conformational diastereomers, 78 enantiomers, 78 stereomers, 78... [Pg.465]

Several groups have studied the structure of chiral phases illustrated in Fig. IV-15 [167,168]. These shapes can be understood in terms of an anisotropic line tension arising from the molecular symmetry. The addition of small amounts of cholesterol reduces X and produces thinner domains. Several studies have sought an understanding of the influence of cholesterol on lipid domain shapes [168,196]. [Pg.139]

Remarkable chiral patterns, such as those in Figs. IV-15 and XV-8, are found in mixtures of cholesterol and 5-dipalmitoyl PC (DPPC) on compression to the plateau region (as in Fig. XV-6). As discussed in Section IV-4F, this behavior has been modeled in terms of an anisotropic line tension arising from molecular symmetry [46-49]. [Pg.545]

The study concerns the desymmetrization of the prochiral dinitrile (16) with preferential formation of the (Ji)-17, which was known to be a chiral intermediate in the synthesis of the cholesterol-lowering therapeutic drug (18) (Lipitor, Sortis, Torvast, etc.) as shown in Scheme 2.3. [Pg.40]

Figure 10.44 RibA catalyzed sequential aldol additions yielding a key chiral building block for cholesterol-lowering drugs. Figure 10.44 RibA catalyzed sequential aldol additions yielding a key chiral building block for cholesterol-lowering drugs.
Kaneko, H., M. Matsuo, and J. Miyamoto. 1986. Differential metabolism of fenvalerate and granuloma formation. I. Identification of a cholesterol ester derived from a specific chiral isomer of fenvalerate. Toxicol. Appl. Pharmacol. 83 148-156. [Pg.1130]

On the other hand, cellular membranes are composed of chiral molecules such as phospholipids and cholesterol, but the homochirality of these constituents is not obviously manifested in the membrane s structure. However, in certain cases biological membranes exhibit a distinct helical or twisted structure, which is a very conspicuous sign of the chirality of the supramolec-ular aggregate. These chiral supramolecular aggregates are the subject of this chapter. [Pg.282]

Reinitzer discovered liquid crystallinity in 1888 the so-called fourth state of matter.4 Liquid crystalline molecules combine the properties of mobility of liquids and orientational order of crystals. This phenomenon results from the anisotropy in the molecules from which the liquid crystals are built. Different factors may govern this anisotropy, for example, the presence of polar and apolar parts in the molecule, the fact that it contains flexible and rigid parts, or often a combination of both. Liquid crystals may be thermotropic, being a state of matter in between the solid and the liquid phase, or they may be lyotropic, that is, ordering induced by the solvent. In the latter case the solvent usually solvates a certain part of the molecule while the other part of the molecule helps induce aggregation, leading to mesoscopic assemblies. The first thermotropic mesophase discovered was a chiral nematic or cholesteric phase (N )4 named after the fact that it was observed in a cholesterol derivative. In hindsight, one can conclude that this was not the simplest mesophase possible. In fact, this mesophase is chiral, since the molecules are ordered in... [Pg.374]

In addition, three types of lipophilic conjugates have been found in pyrethroid metabolism studies (Fig. 4). They are cholesterol ester (fenvalerate) [15], glyceride (3-PBacid, a common metabolite of several pyrethroids) [16], and bile acid conjugates (fluvalinate) [17]. It is noteworthy that one isomer out of the four chiral isomers of fenvalerate yields a cholesterol ester conjugate from its acid moiety [15]. This chiral-specific formation of the cholesterol ester has been demonstrated to be mediated by transesterification reactions of carboxylesterase(s) in microsomes, not by any of the three known biosynthetic pathways of endogenous cholesterol esters... [Pg.116]

The prochirality concept is useful if it is applied to factored structures within a molecule rather than to the whole, because chiral compounds may also contain centers of prostereoisomerism that would become chiral if their homomorphic ligands were made distinct. The methylene carbons of cholesterol or C(3) of chiral trihydroxyglutaric acid (20b) are appropriate examples. [Pg.225]

The ability of a chiral molecule to distinguish between the enantiomers of a second (different) chiral molecule was defined in Sect. II as a diastereomer discrimination. This phenomenon may be observed in a mixed monolayer of two chiral surfactants and may also occur when a chiral substance is dissolved in the aqueous subphase under the monolayer of a second chiral substance. As before, examples of such chiral discrimination would not include those whose difference in monolayer behavior results only from the gross structural differences of diastereomers such as the different force-area characteristics exhibited by mixed monolayers of l-oleoyl-2-stearoyl-3-s -phospha-tidylcholine with epimeric steroids (120). The relevant experiment, that of comparing the monolayer behavior of mixed monolayers of cholesterol with enantiomeric phospholipids, has been reported (121). As might be anticipated from our previous discussion of... [Pg.249]

Cholesterol is derived from the steroid skeleton by adding a hydroxyl group at C3, methyl groups at CIO and C13, an eight-carbon alkyl group at C17, and introducing a double bond between carbon atoms 5 and 6.1 have taken some pains to indicate the stereochemistry at each of the eight chiral centers in this molecule its shape matters. [Pg.265]


See other pages where Cholesterol, chirality is mentioned: [Pg.2035]    [Pg.2035]    [Pg.2544]    [Pg.401]    [Pg.193]    [Pg.203]    [Pg.169]    [Pg.306]    [Pg.215]    [Pg.387]    [Pg.181]    [Pg.338]    [Pg.339]    [Pg.95]    [Pg.68]    [Pg.224]    [Pg.389]    [Pg.84]    [Pg.188]   
See also in sourсe #XX -- [ Pg.81 ]

See also in sourсe #XX -- [ Pg.81 ]

See also in sourсe #XX -- [ Pg.81 ]

See also in sourсe #XX -- [ Pg.81 ]




SEARCH



Cholesterol chiral center

Reinitzer cholesterol, chiral nematics

© 2024 chempedia.info