Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mesophase molecular weight

Mesogenic diols, such as 4,4 -bis( CO-hydtoxyaLkoxy)biphenyls, ate used with 2,4-TDI or 1,4-diisocyanatobenzene (PPDI) to constmct Hquid crystalline polyurethanes (7). Partial replacement of the mesogenic diols by PTMG shows that the use of lower molecular weight flexible spacers form polymers that have a more stable mesophase and exhibit higher crystallinity (8). Another approach to Hquid crystal polyurethanes involves the attachment of cholesterol to the polyurethane chain utilizing the dual reactivity in 2,4-TDI (9). [Pg.344]

Pitches can be transformed to a mesophase state by further chemical and physical operations. Heat treatment of conventional pitches results in additional aromatic polymeriza tion and the distillation of low molecular weight components. This results in an increase in size and concentration of large planar aromatic molecular species whereupon the precursor pitch is transformed to a mesophase state exhibiting the characteristics of nematic Hquid crystals (1). Additional heat treatment converts the mesophase pitch to an infusible aromatic hydrocarbon polymer designated as coke. [Pg.497]

D. M. Riggs, The Characterisation andKinetic Mechanism of Mesophase Formation in High Molecular Weight Carbonaceous Materials, Ph.D. dissertation, Rensselaer Polytechnic Institute, Troy, N.Y., 1979. [Pg.8]

On the other hand, organic materials of relatively low molecular weight such as acetylene, benzene, ethylene and methane, can produce vapour-grown carbon materials by imperfect combustion or by exposing their vapour to a heated substrate in an electric furnace in the presence of a metal catalyst. The latter process generates VGCFs. Other precursors to VGCF include polyacrylonitrile (PAN), isotropic or mesophase pitch, rayon or nylon [8]. [Pg.145]

Preliminary room temperature x-ray data of 0.65 Me4C00-PECH indicates that the sample presents a highly ordered smectic mesophase which was not yet completely assigned. The textures seen by polarized optical microscopy are also typical of smectic phases. Due to the very high molecular weights involved, textures specific to mesophase in thermodynamic equilibrium could not be developed within a reasonable amount of time by annealing. [Pg.116]

Type 1 gels are mesophases that are so highly ordered that they resist disruption of their structure and are thus extraordinarily viscous, to the point of appearing solid-like, even though no high molecular weight species need be present in the system. Surfactants, both synthetic (e.g., sodium dodecylsulfate) and natural (e.g., phospholipids), and clays are typical representatives of this class. [Pg.486]

High molecular weight mesophases were first studied during the late 1930 s using suspensions of tobacco mosaic virus (TMV). Bawden and Pirie (26) reported a solution of TMV separated into two phases as the concentration was increased, one of which was birefringent. [Pg.261]

Solutions of cellulose in NH3/NH4SCN (27 73 w/w) are liquid crystalline at concentrations from 10-16% (w/w) depending on the cellulose molecular weight (64). Optical rotations of the solutions indicate the mesophase is cholesteric with a left-handed twist. The solvent does not react with cellulose. Recently, Yang (60) foimd that cellulose (D.P. 210) formed a mesophase at 3.5% (w/w) concentration at a NH3/NH4SCN of 30 70 (w/w). [Pg.264]

The thermal behavior of la-lg observed by DSC (Fig. 1) confirms the presence of mesophases and is typical of low molecular weight thermotropic LC materials (M). The lower T , for lb and Id are consistent with the higher entropy of activation for crystallization of odd-n spacers, demonstrated in several main chain LC polymers (23). The apparent absence of nematic-smectic transitions in the DSC... [Pg.331]

It is possible for chiral mesogens to produce essentially achiral mesophases. For instance, in certain ranges of concentration and molecular weight, DNA will form an achiral line hexatic phase. A curious recent observation is of the formation of chiral mesophases from achiral mesogens. Specifically, bent-core molecules (sometimes called banana LCs) have been shown to form liquid crystal phases that are chiral. In any particular sample, various domains will have opposite handedness, but within any given domain, strong chiral ordering will be present. [Pg.193]

As in the case of LCP/conventional polymer blending, little data exists on the blending of LCPs of different inherent chain architecture or mesophase symmetry. Publications from the laboratories of Ringsdorf [80] and Finkelmann [81] show phase separation in blends of sidechain nematics with other similar polymers or small molecule analogs. It is now established that, in contrast to the behavior of low molecular weight LCs, LCPs are often immiscible. [Pg.324]

The possible transitions of plastic and condis crystal-forming materials are shown in Fig. 4. For plastic crystals, this diagram is fully based on information on low molecular weight materials. No flexible, linear macromolecules which resemble plastic crystalline behavior have been reported (see Sect. 5.2.3). Similarly, little attention has been paid in the past to conformationally disordered mesophases in small molecules. In fact, some of the plastic crystals of larger organic molecules may actually be condis crystals (see Sects. 5.2,2 and 5.3.3). Since the positional order is preserved in both plastic and condis crystals, the possible phase relations are similar. The major difference from the liquid crystals is the possibility of partial mesophase formation. [Pg.9]


See other pages where Mesophase molecular weight is mentioned: [Pg.68]    [Pg.497]    [Pg.6]    [Pg.24]    [Pg.125]    [Pg.127]    [Pg.387]    [Pg.389]    [Pg.126]    [Pg.116]    [Pg.199]    [Pg.26]    [Pg.367]    [Pg.45]    [Pg.146]    [Pg.148]    [Pg.668]    [Pg.668]    [Pg.682]    [Pg.158]    [Pg.117]    [Pg.259]    [Pg.262]    [Pg.60]    [Pg.29]    [Pg.497]    [Pg.14]    [Pg.26]    [Pg.27]    [Pg.75]    [Pg.228]    [Pg.339]    [Pg.1564]   
See also in sourсe #XX -- [ Pg.104 ]




SEARCH



Mesophase

Mesophases

© 2024 chempedia.info