Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mercury amalgamation with zinc

Inorganic solid wastes, particularly those containing toxic metals and toxic metal compounds, used Raney nickel, manganese dioxide, etc. should be placed in glass bottles or lined fiber drums, sealed, properly labeled, and arrangements made for disposal in a secure landfill. Used mercury is particularly pernicious and small amounts should first be amalgamated with zinc or combined with excess sulfur to solidify the material. [Pg.265]

In casework in which discharge residue particles were detected, and in which the ammunition involved is known to contain mercury, very few, if any, of the particles contained mercury. This has been noted over many years and in numerous cases. Possible reasons for this could be the volatility of mercury and its compounds, or decomposition of the mercury fulminate and the loss of mercury through amalgamation with zinc in the primer cup/car-tridge case. It is not uncommon, when firing old ammunition with mercury fulminate primers, for some of the cartridge cases to crack, due to embrittlement of the brass caused by mercury amalgamating with the zinc. [Pg.205]

Despite its electrode potential (p. 98), very pure zinc has little or no reaction with dilute acids. If impurities are present, local electrochemical cells are set up (cf the rusting of iron. p. 398) and the zinc reacts readily evolving hydrogen. Amalgamation of zinc with mercury reduces the reactivity by giving uniformity to the surface. Very pure zinc reacts readily with dilute acids if previously coated with copper by adding copper(II) sulphate ... [Pg.417]

The methylthio group is removed by treatment with zinc powder in HCl (276) to give the 2-unsubstituted thiazole. The action of aluminum-mercury amalgam in methanol on various thioethers is reported to yield the expected thiazole (108) when Rj is an alkyl group and the corresponding A-4-thiazoline-2-thione (109) when Rj PhCH - (Scheme 55) (169). [Pg.405]

Batteries. Many batteries intended for household use contain mercury or mercury compounds. In the form of red mercuric oxide [21908-53-2] mercury is the cathode material in the mercury—cadmium, mercury—indium—bismuth, and mercury—zinc batteries. In all other mercury batteries, the mercury is amalgamated with the zinc [7440-66-6] anode to deter corrosion and inhibit hydrogen build-up that can cause cell mpture and fire. Discarded batteries represent a primary source of mercury for release into the environment. This industry has been under intense pressure to reduce the amounts of mercury in batteries. Although battery sales have increased greatly, the battery industry has aimounced that reduction in mercury content of batteries has been made and further reductions are expected (3). In fact, by 1992, the battery industry had lowered the mercury content of batteries to 0.025 wt % (3). Use of mercury in film pack batteries for instant cameras was reportedly discontinued in 1988 (3). [Pg.109]

Fig. 3. Evans-diagram for the cementation of Cu2+ and Pb2 with zinc amalgam of different zinc content. If the zinc concentration in the mercury employed for this special extraction technique is low, the anodic zinc-dissolution current density may be diffusion controlled and below the limiting cathodic current density for the copper reduction. The resulting mixed potential will lie near the halfwave potential for the reaction Cu2+ + 2e j Cu°(Hg) and only Cu2 ions are cemented into the mercury. Fig. 3. Evans-diagram for the cementation of Cu2+ and Pb2 with zinc amalgam of different zinc content. If the zinc concentration in the mercury employed for this special extraction technique is low, the anodic zinc-dissolution current density may be diffusion controlled and below the limiting cathodic current density for the copper reduction. The resulting mixed potential will lie near the halfwave potential for the reaction Cu2+ + 2e j Cu°(Hg) and only Cu2 ions are cemented into the mercury.
Silver was formerly extracted by cyanide solution of Ag2S, the resulting Ag(CN)2 being treated with zinc to afford the metal roasted ores could also be extracted with mercury to give silver amalgam. Presently much silver is extracted by workup of the anode slime from the preparation of non-ferrous metals (Pb, Cu) pure silver is obtained by electrolysis of AgN03. [Pg.276]

Mercury forms alloys, called amalgams, with other metals such as gold, silver, zinc, and cadmium. It is not soluble in water, but will dissolve in nitric acid. It has a high electric conductivity, making it useful in the electronics industry. However, unlike most other metals, it is a poor conductor of heat. Because of its high surface tension, it does not wet the surfaces that it touches. This characteristic also accounts for its breakup into tiny droplets when poured over a surface. If spilled, it should not be collected with bare hands, but with a thin piece of cardboard to scoop it up. [Pg.169]

The anhydride moiety of a rebeccamycin analogue 112 (where R = glycoside) is partially or totally reduced by reaction with a zinc-mercury amalgam to give lactones 113 and indolocarbazoles 114 as a mixture of regioisomers (Equation 29) <2004BMC1955>. [Pg.1155]

The other fulminates are of no practical value. They are prepared from mercury fulminate either by reacting the metal amalgam with a suspension of mercury fulminate in water (this is applicable to the majority of metals, including the alkali metals, or simply by the action of the metal itself (e.g. zinc or thallium) which displaces mercury from mercury fulminate (also in water). For example, chips of thallium, zinc, or copper are allowed to stand for some time in a suspension of mercury fulminate in water, the corresponding metal fulminate is gradually formed. [Pg.157]

Sodium, potassium, mercury and silver do not alloy with tantalum even at high temperatures 5 attempts to prepare alloys with arsenic, antimony, lead, zinc and tellurium have also failed, but the formation of an alloy with silver, copper and tin for making a dental amalgam with mercury has recently been claimed.6... [Pg.185]


See other pages where Mercury amalgamation with zinc is mentioned: [Pg.330]    [Pg.81]    [Pg.521]    [Pg.398]    [Pg.843]    [Pg.1313]    [Pg.1333]    [Pg.204]    [Pg.256]    [Pg.459]    [Pg.166]    [Pg.598]    [Pg.1165]    [Pg.336]    [Pg.86]    [Pg.92]    [Pg.702]    [Pg.249]   
See also in sourсe #XX -- [ Pg.205 ]




SEARCH



Amalgam

Amalgamated

Amalgamators

Amalgamism

Amalgamization

Mercury amalgams

With zinc

Zinc amalgam

Zinc, amalgamated

© 2024 chempedia.info