Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membranes system properties

FIG. 22-75 Air fractionation by membrane. O2 in retentate as a function of feed fraction passed tbrougb tbe membrane (stage cut) showing tbe different result with changing process paths. Process has shell-side feed at 690 kPa (abs) and 298 K. Module comprised of hollow fibers, diameter 370 im od X 145 im id X 1500 mm long. Membrane properties (X = 5.7 (O2/N2), permeance for O2 = 3.75 X 10 Barrer/cm. Coutiesy Innovative Membrane Systems/ Fraxair)... [Pg.2051]

The lipids found in biological systems are either hydrophobic (containing only nonpolar groups) or amphipathic, which means they possess both polar and nonpolar groups. The hydrophobic nature of lipid molecules allows membranes to act as effective barriers to more polar molecules. In this chapter, we discuss the chemical and physical properties of the various classes of lipid molecules. The following chapter considers membranes, whose properties depend intimately on their lipid constituents. [Pg.238]

Mooradian (1993) has studied the antioxidant properties of 14 steroids in a non-membranous system in which the fluorescence of the protein phycoerythrin was measured in the presence of a lipid peroxyl radical generator (ABAP). Oxidation of the protein produces a fluorescent species. Quenching of fluorescence by a test compound indicates antioxidant activity. Oestrone, testosterone, progesterone, androstenedione, dehydroepian-drosterone, cortisol, tetrahydrocortisone, deoxycorti-... [Pg.269]

Chemical modifications of PPO by electrophilic substitution of the aromatic backbone provided a variety of new structures with improved gas permeation characteristics. It was found that the substitution degree, main chain rigidity, the bulkiness and flexibility of the side chains and the polarity of the side chains are major parameters controlling the gas permeation properties of the polymer membrane. The broad range of solvents available for the modified structures enhances the possibility of facile preparation of PPO based membrane systems for use in gas separations. [Pg.56]

Thompson, M. Lennox, R. B. McClelland, R. A., Structure and electrochemical properties of microfiltration filter-lipid membrane systems, Anal.Chem. 54, 76-81 (1982). [Pg.280]

Typically, a binary system was selected as the base component of the recipe and the addition of polyelectrolytes to either side (core or receiving bath) was tested to evaluate the change in the capsule properties. The 33 successful multicomponent membrane systems are presented in Table 1. The components of the core material side (21 different chemical compositions) are listed in the first column, while the receiving bath components (20 different chemical compositions) are listed in the second column. With the exception of xanthan and CMC, the first polymer listed on the core side are gelling polymers which form beads with the appropriate ionotropic cation (salt). CMC can also be gelled by ions (alum), although they are considered to be non-compatible for cellular applications. The cations were tested both sequentially, usually with ionotropic cation first, and simultaneously. Walled capsules with adequate mechanical properties were often obtained through the simultaneous application of two polycations. Such a... [Pg.61]

Table 2. Properties of selected multicomponent membrane systems... [Pg.63]

The multilamellar bilayer structures that form spontaneously on adding water to solid- or liquid-phase phospholipids can be dispersed to form vesicular structures called liposomes. These are often employed in studies of bilayer properties and may be combined with membrane proteins to reconstitute functional membrane systems. A valuable technique for studying the properties of proteins inserted into bilayers employs a single bilayer lamella, also termed a black lipid membrane, formed across a small aperture in a thin partition between two aqueous compartments. Because pristine lipid bilayers have very low ion conductivities, the modifications of ion-conducting... [Pg.23]

The transport behavior of Li+ across membranes has been the focus of numerous studies, the bulk of which have concentrated upon the human erythrocyte for which the Li+ transport pathways have been elucidated and are summarized below. The movement of Li+ across cell membranes is mediated by transport systems which normally transport other ions, therefore the normal intracellular and subcellular electrolyte balance is likely to be disturbed by this extra cation. Additionally, Li+ has been shown to increase membrane phospholipid unsaturation in rat brain, leading to enhanced fluidity in the membrane, which could have repercussions for membrane-associated proteins and for membrane transport properties. [Pg.12]

The fluid mosaic model conveniently describes how the constituent molecules are ordered, and it correctly describes, in first order, some of the membrane s properties. However, it does not give explicit insight into why the biological membrane has a particular structure, and how this depends on the properties of the constituent molecules and the physicochemical conditions surrounding it. For this reason, only qualitative and no quantitative use can be made of this model as it pertains to permeation properties, for example. It is instructive to review the physicochemical principles that are responsible for typical membrane characteristics. In such a survey, it is necessary to discuss simplified cases of self-assembly first, before the complexity of the biological system may be understood. The focus of this quest for principles will therefore be more on the level of the molecular nature of the membrane, rather than viewing a... [Pg.17]

Equilibrium properties are surprisingly accurately predicted by molecular-level SCF calculations. MC simulations help us to understand why the SCF theory works so well for these densely packed layers. In effect, the high density screens the correlations for chain packing and chain conformation effects to such a large extent that the properties of a single chain in an external field are rather accurate. Cooperative fluctuations, such as undulations, are not included in the SCF approach. Also, undulations cannot easily develop in an MD box. To see undulations, one needs to perform molecularly realistic simulations on very large membrane systems, which are extremely expensive in terms of computation time. [Pg.100]

The link from lipid properties to mechanical properties of the bilayers is now feasible within the SCF approach. The next step is to understand the phase behaviour of the lipid systems. It is likely that large-scale (3D) SCF-type calculations are needed to prove the conjectures in the field that particular values of the Helfrich parameters are needed for processes like vesicle fusion, etc. In this context, it may also be extremely interesting to see what happens with the mechanical parameters when the system is molecularly complex (i.e. when the system contains many different types of molecules). Then there will be some hope that novel and deep insights may be obtained into the very basic questions behind nature s choice for the enormous molecular complexity in membrane systems. [Pg.100]

O2 diffusion through the membrane seems to be limited by the percolation network of the diffusion path, which is not only defined by the amount of water in the membrane, but also by the different chemical structure of the membranes. It is difficult to make comparisons of gaseous diffusion behavior among polymers with different structures because polymer morphology can change drastically without appreciable changes in density, and the presence of water and the hydrogen bonds formed between polymer-water moieties also has major effects on system properties. However, some points can be made from these particular studies. [Pg.121]

Membrane Water Content. Whether the dilute solution or concentrated solution theory equations are used to model the membrane system, functional forms for the transport parameters and the concentration of water are needed. The properties are functions of temperature and the water content, In the models, empirical fits are... [Pg.454]

Basic properties of membrane systems Table 7.1 (cont.)... [Pg.183]

In summary, the NS-300 membrane system actually comprises a family of membranes, with reverse osmosis properties determined by the isophthallc trimesic ratio. Exceptionally high fluxes are possible at high retentivity levels for dissolved salts containing polyvalent anions. This membrane type may find applications in the desalination of brackish sulfate ground waters or industrial... [Pg.316]


See other pages where Membranes system properties is mentioned: [Pg.530]    [Pg.29]    [Pg.582]    [Pg.20]    [Pg.190]    [Pg.314]    [Pg.314]    [Pg.319]    [Pg.52]    [Pg.58]    [Pg.576]    [Pg.143]    [Pg.165]    [Pg.263]    [Pg.88]    [Pg.509]    [Pg.248]    [Pg.239]    [Pg.20]    [Pg.164]    [Pg.5]    [Pg.452]    [Pg.174]    [Pg.175]    [Pg.177]    [Pg.179]    [Pg.181]    [Pg.51]    [Pg.327]    [Pg.12]    [Pg.4]   
See also in sourсe #XX -- [ Pg.726 ]




SEARCH



System properties

Systemic properties

© 2024 chempedia.info