Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membranes layer phase formation

Membranes offer a format for interaction of an analyte with a stationary phase alternative to the familiar column. For certain kinds of separations, particularly preparative separations involving strong adsorption, the membrane format is extremely useful. A 5 x 4 mm hollow-fiber membrane layered with the protein bovine serum albumin was used for the chiral separation of the amino acid tryptophan, with a separation factor of up to 6.6.62 Diethey-laminoethyl-derivatized membrane disks were used for high-speed ion exchange separations of oligonucleotides.63 Sulfonated membranes were used for peptide separations, and reversed-phase separations of peptides, steroids, and aromatic hydrocarbons were accomplished on C18-derivatized membranes. [Pg.65]

PolycrystalHne membrane growth proceeds by initial formation of a gel layer on the surface of the support crystallization takes place at the interface between the bulk Hquid phase and the gel layer, resulting in deposition of zeolite nuclei and crystals formed [8]. Concurrently, the crystals deposited onto the support surface continue to grow, eventually resulting in a continuous membrane layer. Postsynthesis treatment is necessary when a template is used in synthesis to activate the zeolite and open the pores. Usually this is accomplished through calcination or burn out of the organic molecule. [Pg.310]

Relationship Between Nodular and Rejecting Layers. Nodular formation was conceived by Maler and Scheuerman (14) and was shown to exist in the skin structure of anisotropic cellulose acetate membranes by Schultz and Asunmaa ( ), who ion etched the skin to discover an assembly of close-packed, 188 A in diameter spheres. Resting (15) has identified this kind of micellar structure in dry cellulose ester reverse osmosis membranes, and Panar, et al. (16) has identified their existence in the polyamide derivatives. Our work has shown that nodules exist in most polymeric membranes cast into a nonsolvent bath, where gelation at the interface is caused by initial depletion of solvent, as shown in Case B, which follows restricted Inward contraction of the interfacial zone. This leads to a dispersed phase of micelles within a continuous phase (designated as "polymer-poor phase") composed of a mixture of solvents, coagulant, and a dissolved fraction of the polymer. The formation of such a skin is delineated in the scheme shown in Figure 11. [Pg.278]

Kawakami et al. prepared dense and asymmetric membranes from 2,2 -bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and bis[4-(4-aminophen-oxy)phenyl]sulfone (APPS) by solvent evaporation (dense) and by the dry-wet phase inversion technique [47]. The surface morphology was studied by AFM. They reported that the solvent evaporation method adopted for the preparation of the dense membrane influenced the formation of nodules, while the dry-wet process in which solvent/nonsolvent exchange was involved determined the roughness of the skin layer. [Pg.133]

The formation of layer phases in concentrated amphiphile solutions can be rationalized on the basis of the membrane interfacial curvature, which is related to the surfactant packing parameter. As detailed in Section 4.9, if the surfactant parameter 1, then a lamellar phase is favoured... [Pg.211]

It follows from the above that the mechanism for electrical potential oscillation across the octanol membrane in the presence of SDS would most likely be as follows dodecyl sulfate ions diffuse into the octanol phase (State I). Ethanol in phase w2 must be available for the transfer energy of DS ions from phase w2 to phase o to decrease and thus, facilitates the transfer of DS ions across this interface. DS ions reach interface o/wl (State II) and are adsorbed on it. When surfactant concentration at the interface reaches a critical value, a surfactant layer is formed at the interface (State III), whereupon, potential at interface o/wl suddenly shifts to more negative values, corresponding to the lower potential of oscillation. With change in interfacial tension of the interface, the transfer and adsorption of surfactant ions is facilitated, with consequent fluctuation in interface o/ wl and convection of phases o and wl (State IV). Surfactant concentration at this interface consequently decreased. Potential at interface o/wl thus takes on more positive values, corresponding to the upper potential of oscillation. Potential oscillation is induced by the repetitive formation and destruction of the DS ion layer adsorbed on interface o/wl (States III and IV). This mechanism should also be applicable to oscillation with CTAB. Potential oscillation across the octanol membrane with CTAB is induced by the repetitive formation and destruction of the cetyltrimethylammonium ion layer adsorbed on interface o/wl. Potential oscillation is induced at interface o/wl and thus drugs were previously added to phase wl so as to cause changes in oscillation mode in the present study. [Pg.711]

Although the notion of monomolecular surface layers is of fundamental importance to all phases of surface science, surfactant monolayers at the aqueous surface are so unique as virtually to constitute a special state of matter. For the many types of amphipathic molecules that meet the simple requirements for monolayer formation it is possible, using quite simple but elegant techniques over a century old, to obtain quantitative information on intermolecular forces and, furthermore, to manipulate them at will. The special driving force for self-assembly of surfactant molecules as monolayers, micelles, vesicles, or cell membranes (Fendler, 1982) when brought into contact with water is the hydrophobic effect. [Pg.47]

Based on the 96-well format, OCT-PAMPA was proposed and has proved its ability to determine (indirectly) log Poet [87]. PAM PA is a method, first developed for permeability measurements, where a filter supports an artificial membrane (an organic solvent or phospholipids) [88, 89]. With this method, the apparent permeability coefficient (log P ) of the neutral form of tested compounds is derived from the measurement of the diffusion between two aqueous phases separated by 1-octanol layer (immobilized on a filter). A bilinear correlation was found between log Pa and log Poct> therefore log Poet of unknown compounds can be determined from log Pa using a calibration curve. Depending on the detection method used a range oflog P within —2 to +5 (with UV detection) and within —2 to +8 (with LC-MS detection) was successfully explored. This method requires low compound amounts (300 pi of 0.04 mM test compound) and, as for the previous method, samples can be prepared in DM SO stock solutions. For these experiments, an incubation time of 4h was determined as the best compromise in term of discrimination. The limitation of the technique lies in the lower accuracy values... [Pg.99]

Figure 9.29 Membrane formation by meteoritic amphiphilic compounds (courtesy of David Deamer). A sample of the Murchison meteorite was extracted with the chloroform-methanol-water solvent described by Deamer and Pashley, 1989. Amphiphilic compounds were isolated chromatographically on thin-layer chromatography plates (fraction 1), and a small aliquot ( 1 p,g) was dried on a glass microscope slide. Alkaline carbonate buffer (15 p,l, 10 mM, pH 9.0) was added to the dried sample, followed by a cover slip, and the interaction of the aqueous phase with the sample was followed by phase-contrast and fluorescence microscopy, (a) The sample-buffer interface was 1 min. The aqueous phase penetrated the viscous sample, causing spherical structures to appear at the interface and fall away into the medium, (b) After 30 min, large numbers of vesicular structures are produced as the buffer further penetrates the sample, (c) The vesicular nature of the structures in (b) is clearly demonstrated by fluorescence microscopy. Original magnification in (a) is x 160 in (b) and (c) x 400. Figure 9.29 Membrane formation by meteoritic amphiphilic compounds (courtesy of David Deamer). A sample of the Murchison meteorite was extracted with the chloroform-methanol-water solvent described by Deamer and Pashley, 1989. Amphiphilic compounds were isolated chromatographically on thin-layer chromatography plates (fraction 1), and a small aliquot ( 1 p,g) was dried on a glass microscope slide. Alkaline carbonate buffer (15 p,l, 10 mM, pH 9.0) was added to the dried sample, followed by a cover slip, and the interaction of the aqueous phase with the sample was followed by phase-contrast and fluorescence microscopy, (a) The sample-buffer interface was 1 min. The aqueous phase penetrated the viscous sample, causing spherical structures to appear at the interface and fall away into the medium, (b) After 30 min, large numbers of vesicular structures are produced as the buffer further penetrates the sample, (c) The vesicular nature of the structures in (b) is clearly demonstrated by fluorescence microscopy. Original magnification in (a) is x 160 in (b) and (c) x 400.
I. Pinnau and W.J. Koros, A Qualitative Skin Layer Formation Mechanism for Membranes Made by DryAVet Phase Inversion, J. Polym. Sci., Part B Polym. Phys. 31, 419 (1993). [Pg.156]

That it is not polymer relaxation but drug dissolution rate, or drug solubility, which accounts for membrane formation can be seen from Figure 15 During the short acetone swelling phase the 0X-loaded core expands, even as a sharply defined drug depleted outside layer is formed complete dissolution occurs only after "v 90 minutes. [Pg.153]


See other pages where Membranes layer phase formation is mentioned: [Pg.77]    [Pg.76]    [Pg.154]    [Pg.132]    [Pg.92]    [Pg.942]    [Pg.211]    [Pg.914]    [Pg.223]    [Pg.244]    [Pg.367]    [Pg.23]    [Pg.24]    [Pg.272]    [Pg.319]    [Pg.938]    [Pg.126]    [Pg.143]    [Pg.343]    [Pg.432]    [Pg.163]    [Pg.242]    [Pg.278]    [Pg.204]    [Pg.478]    [Pg.268]    [Pg.269]    [Pg.10]    [Pg.141]    [Pg.626]    [Pg.455]    [Pg.159]    [Pg.242]    [Pg.94]    [Pg.186]    [Pg.159]    [Pg.327]    [Pg.375]    [Pg.345]   
See also in sourсe #XX -- [ Pg.12 , Pg.211 ]




SEARCH



Layer membrane

Layered membrane

Phase formation

© 2024 chempedia.info