Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane processes 2 Osmosis

Reverse osmosis is a high-pressure membrane separation process (20 to 100 bar) which can be used to reject dissolved inorganic salt or heavy metals. The concentrated waste material produced by membrane process should be recycled if possible but might require further treatment or disposal. [Pg.312]

The pressure difference between the high and low pressure sides of the membrane is denoted as AP the osmotic pressure difference across the membrane is defined as Att the net driving force for water transport across the membrane is AP — (tAtt, where O is the Staverman reflection coefficient and a = 1 means 100% solute rejection. The standardized terminology recommended for use to describe pressure-driven membrane processes, including that for reverse osmosis, has been reviewed (24). [Pg.146]

The individual membrane filtration processes are defined chiefly by pore size although there is some overlap. The smallest membrane pore size is used in reverse osmosis (0.0005—0.002 microns), followed by nanofiltration (0.001—0.01 microns), ultrafHtration (0.002—0.1 microns), and microfiltration (0.1—1.0 microns). Electro dialysis uses electric current to transport ionic species across a membrane. Micro- and ultrafHtration rely on pore size for material separation, reverse osmosis on pore size and diffusion, and electro dialysis on diffusion. Separation efficiency does not reach 100% for any of these membrane processes. For example, when used to desalinate—soften water for industrial processes, the concentrated salt stream (reject) from reverse osmosis can be 20% of the total flow. These concentrated, yet stiH dilute streams, may require additional treatment or special disposal methods. [Pg.163]

Common membrane processes include ultrafiltration (UF), reverse osmosis (RO), electro dialysis (ED), and electro dialysis reversal (EDR). These processes (with the exception of UF) remove most ions RO and UF systems also provide efficient removal of nonionized organics and particulates. Because UF membrane porosity is too large for ion rejection, the UF process is used to remove contaminants, such as oil and grease, and suspended soHds. [Pg.261]

Reverse Osmosis. Osmosis is the flow of solvent through a semipermeable membrane, from a dilute solution to a concentrated solution. This flow results from the driving force created by the difference in pressure between the two solutions. Osmotic pressure is the pressure that must be added to the concentrated solution side to stop the solvent flow through the membrane. Reverse osmosis is the process of reversing the flow, forcing water through a membrane from a concentrated solution to a dilute solution to produce pure water. Figure 2 illustrates the processes of osmosis and reverse osmosis. [Pg.261]

Reverse Osmosis and Ultrafiltration. Reverse osmosis (qv) (or hyperfiltration) and ultrafilttation (qv) ate pressure driven membrane processes that have become well estabUshed ia pollution control (89—94). There is no sharp distinction between the two both processes remove solutes from solution. Whereas ultrafiltration usually implies the separation of macromolecules from relatively low molecular-weight solvent, reverse osmosis normally refers to the separation of the solute and solvent molecules within the same order of magnitude in molecular weight (95) (see also Membrane technology). [Pg.382]

The most common membrane systems are driven by pressure. The essence of a pressure-driven membrane process is to selectively permeate one or more species through the membrane. The stream retained at the high pressure side is called the retentate while that transported to the low pressure side is denoted by the permeate (Fig. 11.1). Pressure-driven membrane systems include microfiltration, ultrafiltration, reverse osmosis, pervaporation and gas/vapor permeation. Table ll.l summarizes the main features and applications of these systems. [Pg.262]

An survey of recent developments in membrane processes, involving reverse osmosis (RO), ultrafiltration (UF), microfiltration (MF), electrodialysis (ED), dialysis (D), pervaporation (Pr), gas permeation (GP), and emulsion liquid membrane (ELM), has been provided by Sirkar (1997). [Pg.431]

Configurations used include tubes, plate-and-frame arrangements and spiral wound modules. Spiral wound modules should be treated to remove particles down to 20 to 50. im, while hollow fiber modules require particles down to 5 im to be removed. If necessary, pH should be adjusted to avoid extremes of pH. Also, oxidizing agents such as free chlorine must be removed. Because of these restrictions, reverse osmosis is only useful if the wastewater to be treated is free of heavy contamination. The concentrated waste material produced by membrane processes should be recycled if possible but might require further treatment or disposal. [Pg.586]

The third membrane process that has been used successfully in water purification is ultrafiltration. As with reverse osmosis, the driving force is pressure. However, in ultrafiltration the separation is merely based on the size of the molecules. Here the passage of molecules having molecular weights above 100 can be deterred. The pressure differences are usually between 20 and 50 psi (1.4-3.5 kg/cm2). [Pg.445]

In the field of membrane filtration, a distinction is made based upon the size of the particles, which are retained by the membrane. That is micro-, ultra-, nanofiltration and reverse osmosis. Figure 4.8 shows a schematic picture of the classification of membrane processes. The areas of importance for application with homogeneous catalysts are ultra- and nanofiltration, depicted in gray. [Pg.78]

Other membrane processes such as microfiltration, ultrafiltration, reverse osmosis, and colloid-enhanced ultrafiltration have been applied to the separation of beta-cypermethrin from wastewater samples [27]. In this study, a separation of above 92% was performed by reverse osmosis by the use of composite membranes and above 80% by colloid-enhanced ultrafiltration by the use of nonionic surfactants. [Pg.57]

Reverse osmosis membrane process, 27 637 Reverse osmosis membrane cleaning citric acid application, 6 647 Reverse-osmosis membranes, 75 811, 825 development of, 75 797 Reverse osmosis models, 27 638-639 Reverse osmosis permeators, 76 19 Reverse osmosis seawater desalination process, 26 85 Reverse osmosis systems blending in, 26 80-81 brackish and nanofiltration, 26 80-83 Reverse osmosis technology... [Pg.804]

Membrane processes such as ultrahltrahon or reverse osmosis have been proposed as oil removal processes. Laboratory tests have indicated favorable oil removal, although relatively low flux rates, membrane fouling, and membrane life problems have presented concerns for the practical applicahon of membrane processes to oil removal. [Pg.244]

Belfort, G. In Synthetic Membrane Processes, Belfort, G. (ed.) (Academic Press, Orlando, 1984). Desalting experience by hyperfiltration (reverse osmosis) in the United States. [Pg.473]


See other pages where Membrane processes 2 Osmosis is mentioned: [Pg.440]    [Pg.153]    [Pg.154]    [Pg.295]    [Pg.240]    [Pg.248]    [Pg.2031]    [Pg.356]    [Pg.262]    [Pg.126]    [Pg.127]    [Pg.138]    [Pg.478]    [Pg.369]    [Pg.309]    [Pg.113]    [Pg.68]    [Pg.284]    [Pg.1247]    [Pg.1323]    [Pg.139]    [Pg.150]    [Pg.196]    [Pg.198]    [Pg.198]    [Pg.198]    [Pg.137]    [Pg.237]    [Pg.239]    [Pg.27]    [Pg.41]    [Pg.453]    [Pg.527]   


SEARCH



Membrane process

Membrane processing

Osmosis

© 2024 chempedia.info