Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermosets mechanical properties

No polymer is ever 100% crystalline at best, patches of crystallinity are present in an otherwise amorphous matrix. In some ways, the presence of these domains of crystallinity is equivalent to cross-links, since different chains loop in and out of the same crystal. Although there are similarities in the mechanical behavior of chemically cross-linked and partially crystalline polymers, a significant difference is that the former are irreversibly bonded while the latter are reversible through changes of temperature. Materials in which chemical cross-linking is responsible for the mechanical properties are called thermosetting those in which this kind of physical cross-linking operates, thermoplastic. [Pg.26]

We noted above that the presence of monomer with a functionality greater than 2 results in branched polymer chains. This in turn produces a three-dimensional network of polymer under certain circumstances. The solubility and mechanical behavior of such materials depend critically on whether the extent of polymerization is above or below the threshold for the formation of this network. The threshold is described as the gel point, since the reaction mixture sets up or gels at this point. We have previously introduced the term thermosetting to describe these cross-linked polymeric materials. Because their mechanical properties are largely unaffected by temperature variations-in contrast to thermoplastic materials which become more fluid on heating-step-growth polymers that exceed the gel point are widely used as engineering materials. [Pg.314]

Table 1. Mechanical Properties and Relative Costs of Thermosetting and Thermoplastic Composites... Table 1. Mechanical Properties and Relative Costs of Thermosetting and Thermoplastic Composites...
Thermosetting unsaturated polyester resins constitute the most common fiber-reinforced composite matrix today. According to the Committee on Resin Statistics of the Society of Plastics Industry (SPl), 454,000 t of unsaturated polyester were used in fiber-reinforced plastics in 1990. These materials are popular because of thek low price, ease of use, and excellent mechanical and chemical resistance properties. Over 227 t of phenoHc resins were used in fiber-reinforced plastics in 1990 (1 3). PhenoHc resins (qv) are used when thek inherent flame retardance, high temperature resistance, or low cost overcome the problems of processing difficulties and lower mechanical properties. [Pg.18]

The classification given in Table 1 is based on the process, ie, thermosetting or thermoplastic, by which polymers in general are formed into usehil articles and on the mechanical properties, ie, rigid, flexible, or mbbery, of the final product. AH commercial polymers used for molding, extmsion, etc, fit into one of these six classifications the thermoplastic elastomers are the newest. [Pg.11]

Mechanical properties are typical of a rigid plastics material and numerical values (Table 30.2) are similar to those for poly(methyl methacrylate). Although thermosetting, it has a low heat distortion temperature ( 80°C) and is not particularly useful at elevated temperatures. [Pg.859]

The mechanical properties of plastics materials may often be considerably enhanced by embedding fibrous materials in the polymer matrix. Whilst such techniques have been applied to thermoplastics the greatest developents have taken place with the thermosetting plastics. The most common reinforcing materials are glass and cotton fibres but many other materials ranging from paper to carbon fibre are used. The fibres normally have moduli of elasticity substantially greater than shown by the resin so that under tensile stress much of the load is borne by the fibre. The modulus of the composite is intermediate to that of the fibre and that of the resin. [Pg.921]

The PGS obtained by Wang and coworkers was a kind of thermoset elastomer with the Young s modulus of 0.282 0.025 MPa, a tensile strain of at least 267 zE 59.4%, and a tensUe strength was at least 0.5 MPa. The mechanical properties of PGS were well consisted with that of some common soft tissues. Although PGS is a thermoset polymer, its prepolymer can be processed into various shapes by solving it in common organic solvents such as 1,3-dioxolane, tetrahydrofuran, isopropanol, ethanol, and iV,M-dimethylformamide. Porous scaffolds can be fabricated by salt leaching. [Pg.223]

Uniaxial deformations give prolate (needle-shaped) ellipsoids, and biaxial deformations give oblate (disc-shaped) ellipsoids [220,221], Prolate particles can be thought of as a conceptual bridge between the roughly spherical particles used to reinforce elastomers and the long fibers frequently used for this purpose in thermoplastics and thermosets. Similarly, oblate particles can be considered as analogues of the much-studied clay platelets used to reinforce a variety of materials [70-73], but with dimensions that are controllable. In the case of non-spherical particles, their orientations are also of considerable importance. One interest here is the anisotropic reinforcements such particles provide, and there have been simulations to better understand the mechanical properties of such composites [86,222],... [Pg.372]

This research was an attempt to develop new polymers with the mechanical properties of polyarylene ethers and the dielectric properties of fluoropolymers. After initially testing the viability of the [2n+ 2n] cyclodimerization reaction for preparing high-molecular-weight polymers and testing the dielectric properties of these polymers, two polymers (one thermoplastic and one thermoset) were prepared in larger quantities to evaluate the thermal and mechanical performance of these novel compositions. The high Te thermoset was also quantitatively tested for thermal/oxidative stability. [Pg.43]

The parts have good mechanical properties but the creep behaviour is not as good as for thermoset composites. [Pg.814]


See other pages where Thermosets mechanical properties is mentioned: [Pg.444]    [Pg.58]    [Pg.444]    [Pg.58]    [Pg.532]    [Pg.443]    [Pg.96]    [Pg.6]    [Pg.7]    [Pg.8]    [Pg.23]    [Pg.2458]    [Pg.585]    [Pg.861]    [Pg.6]    [Pg.577]    [Pg.578]    [Pg.802]    [Pg.814]    [Pg.835]    [Pg.168]    [Pg.607]    [Pg.18]    [Pg.1053]    [Pg.778]    [Pg.779]    [Pg.301]    [Pg.364]    [Pg.484]    [Pg.150]    [Pg.554]    [Pg.556]    [Pg.27]    [Pg.248]    [Pg.23]    [Pg.31]    [Pg.317]    [Pg.325]    [Pg.337]    [Pg.389]   
See also in sourсe #XX -- [ Pg.103 ]

See also in sourсe #XX -- [ Pg.103 ]




SEARCH



Mechanical Properties of Composites Based on Thermosetting Polymers

Mechanical properties thermoset

Mechanical properties thermoset

Thermoset elastomers mechanical properties

Thermoset recyclate composites mechanical properties

Thermosetting properties

© 2024 chempedia.info