Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanical directed metal oxidation

DFT is a powerful method for determining reaction mechanisms over metal-oxide systems. We have chosen to review studies that focus on developing catalysts for the water-gas-shift reaction because this is a particularly active research area with numerous examples of DFT application to supported metal-oxide catalysis. The studies first considered herein assess the activity of unsupported gold and copper metal clusters, which can then be compared directly to studies over the analogous oxide-supported systems. The importance of considering particle-support interactions is emphasized, because the oxide support can often play an active role in catalytic mechanisms. [Pg.171]

The mechanism for CO oxidation over platinum group metals has been established from a wealth of data, the analysis of which is beyond the scope of this chapter. It is quite evident that surface science provided the foundation for this mechanism by directly showing that CO adsorbs molecularly and O2 adsorbs... [Pg.952]

Underdeposit corrosion is not so much a single corrosion mechanism as it is a generic description of wastage beneath deposits. Attack may appear much the same beneath silt, precipitates, metal oxides, and debris. Differential oxygen concentration cell corrosion may appear much the same beneath all kinds of deposits. However, when deposits tend to directly interact with metal surfaces, attack is easier to recognize. [Pg.85]

Much of the difficulty in demonstrating the mechanism of breakaway in a particular case arises from the thinness of the reaction zone and its location at the metal-oxide interface. Workers must consider (a) whether the oxide is cracked or merely recrystallised (b) whether the oxide now results from direct molecular reaction, or whether a barrier layer remains (c) whether the inception of a side reaction (e.g. 2CO - COj + C)" caused failure or (d) whether a new transport process, chemical transport or volatilisation, has become possible. In developing these mechanisms both arguments and experimental technique require considerable sophistication. As a few examples one may cite the use of density and specific surface-area measurements as routine of porosimetry by a variety of methods of optical microscopy, electron microscopy and X-ray diffraction at reaction temperature of tracer, electric field and stress measurements. Excellent metallographic sectioning is taken for granted in this field of research. [Pg.282]

As indicated above, when a positive direct current is impressed upon a piece of titanium immersed in an electrolyte, the consequent rise in potential induces the formation of a protective surface film, which is resistant to passage of any further appreciable quantity of current into the electrolyte. The upper potential limit that can be attained without breakdown of the surface film will depend upon the nature of the electrolyte. Thus, in strong sulphuric acid the metal/oxide system will sustain voltages of between 80 and 100 V before a spark-type dielectric rupture ensues, while in sodium chloride solutions or in sea water film rupture takes place when the voltage across the oxide film reaches a value of about 12 to 14 V. Above the critical voltage, anodic dissolution takes place at weak spots in the surface film and appreciable current passes into the electrolyte, presumably by an initial mechanism involving the formation of soluble titanium ions. [Pg.878]

Before considering the principles of this method, it is useful to distinguish between anodic protection and cathodic protection (when the latter is produced by an external e.m.f.). Both these techniques, which may be used to reduce the corrosion of metals in contact with electrolytes, depend upon the electrochemical mechanisms that result from changing the potential of a metal. The appropriate potential-pH diagram for the Fe-H20 system (Section 1.4) indicates the magnitude and direction of the changes in the potential of iron immersed in water (pH about 7) necessary to make it either passive or immune in the former case the stability of the metal depends on the formation of a protective film of metal oxide (passivation), whereas in the latter the metal itself is thermodynamically stable and egress of metal ions from the lattice into the solution is thus prevented. [Pg.261]

Transition metal oxides represent a prominent class of partial oxidation catalysts [1-3]. Nevertheless, materials belonging to this class are also active in catalytic combustion. Total oxidation processes for environmental protection are mostly carried out industriaUy on the much more expensive noble metal-based catalysts [4]. Total oxidation is directly related to partial oxidation, athough opposes to it. Thus, investigations on the mechanism of catalytic combustion by transition metal oxides can be useful both to avoid it in partial oxidation and to develop new cheaper materials for catalytic combustion processes. However, although some aspects of the selective oxidation mechanisms appear to be rather established, like the involvement of lattice catalyst oxygen (nucleophilic oxygen) in Mars-van Krevelen type redox cycles [5], others are still uncompletely clarified. Even less is known on the mechanism of total oxidation over transition metal oxides [1-4,6]. [Pg.483]

The catalysts which have been tested for the direct epoxidation include (i) supported metal catalysts, (ii) supported metal oxide catalysts (iii) lithium nitrate salt, and (iv) metal complexes (1-5). Rh/Al203 has been identified to be one of the most active supported metal catalysts for epoxidation (2). Although epoxidation over supported metal catalysts provides a desirable and simple approach for PO synthesis, PO selectivity generally decreases with propylene conversion and yield is generally below 50%. Further improvement of supported metal catalysts for propylene epoxidation relies not only on catalyst screening but also fundamental understanding of the epoxidation mechanism. [Pg.404]

More recently, based on the results of an extensive series of small scale degradation studies, two additional mechanisms for the volatilization of antimony from antimony oxide/organohalogen flame retardant systems have been proposed (23,24). Of these two proposed mechanisms, [4] and [5], [4] does not involve HX formation at all and [5] suggests an important role for the direct interaction of the polymer substrate with the metal oxide prior to its reaction with the halogen compound. [Pg.110]

Chromylchloride, Cr02Cl2, the main subject of the publication which led to the original discussion about the mechanism [12], shows a very different reactivity compared to the other transition metal oxides discussed above. Even in the absence of peroxides, it yields epoxides rather than diols in a complex mixture of products, which also contains cis-chlorohydrine and vicinal dichlorides. Many different mechanisms have been proposed to explain the great variety of products observed, but none of the proposed intermediates could be identified. Stairs et al. have proposed a direct interaction of the alkene with one oxygen atom of chromylchloride [63-65], while Sharpless proposed a chromaoxetane [12] formed via a [2+2] pathway. [Pg.265]

An aspect of these collagenases that bears directly on inhibition studies is that of their activation mechanism(s). In vitro studies have shown that pro-HFC and pro-HNC, as well as the other pro-MMP, can be activated by a variety of seemingly disparate means, including treatment with protein-ases, heavy metals, oxidants, disulphide compounds, alkylating agents, and conformational perturbants. The molecular basis for the latency of these zy-... [Pg.282]

Metal oxides are an important elass of heterogeneous catalysts. They find direct application in a variety of reactions, from acid-base to redox reactions, in photocatalytic processes, and as catalysts for environmental protection. In addition, they are widely used as supports for other active components (metal particles or other metal oxides), although often they act not only as a support, but actively participate in the reaction mechanism." ... [Pg.81]

Finally, it may be noted that the manganese and chromium oxyanions (permanganate and chromate) are known to oxidize alkanes readily (102). In these reactions there is not any direct interaction between the transition metal and the alkane the favored mechanism for chromate oxidation is... [Pg.185]


See other pages where Mechanical directed metal oxidation is mentioned: [Pg.484]    [Pg.87]    [Pg.122]    [Pg.294]    [Pg.303]    [Pg.592]    [Pg.253]    [Pg.132]    [Pg.71]    [Pg.277]    [Pg.162]    [Pg.26]    [Pg.536]    [Pg.453]    [Pg.80]    [Pg.248]    [Pg.241]    [Pg.367]    [Pg.260]    [Pg.253]    [Pg.377]    [Pg.158]    [Pg.431]    [Pg.448]    [Pg.421]    [Pg.184]    [Pg.281]    [Pg.582]    [Pg.385]    [Pg.411]    [Pg.190]    [Pg.180]    [Pg.28]    [Pg.467]    [Pg.83]    [Pg.400]    [Pg.374]    [Pg.129]   
See also in sourсe #XX -- [ Pg.310 ]




SEARCH



Direct mechanism

Direct metalation

Direct metallation

Direct oxidation

Directed metal oxidation

Directing mechanism

Mechanical metals

Metalation mechanism

Metallation directed

Oxidation directed

Oxidation directive

© 2024 chempedia.info