Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanical aeration formation

Where materials are stored in bulk, to reduce the risk of mould formation or fermentation it is advisable to store them in aerated rooms or containers using natural or mechanical aeration and ventilation. These areas should also be equipped in such a way as to protect against the entry of insects or animals, especially rodents. Effective measures should be taken to limit the spread of animals and microorganisms brought in with the plant material and to prevent cross-contamination. [Pg.93]

Transfer from the water column to the atmosphere may also occur by the formation of droplets formed as breaking waves create a spray. This is responsible for the transmission of sodium chloride into coastal areas. Bursting of bubbles at the water surface may cause very small water droplets to be propelled into the atmosphere, whereupon they become permanently incorporated into the atmosphere by turbulent eddies. This is most likely to occur in water bodies where there is significant anaerobic methane formation, or in biological oxidation units in which there is deliberate mechanical aeration of the water. It is noteworthy that such droplets may be enriched in solutes which preferentially associate with surface organic microlayers. [Pg.305]

At first sight the mechanism of crevice corrosion appears to be simply the formation of a differential aeration cell in which the freely exposed metal outside the crevice is predominantly cathodic whilst the metal within the crevice is predominantly or solely anodic the large cathode current acts on the small anodic area thus resulting in intense attack. However, although differential aeration plays an important role in the mechanism, the situation in reality is far more complex, owing to the formation of acid within the crevice. [Pg.166]

Pulse radiolysis experiments have shown that "OH radical adds preferentially at C5 of the uracil moiety, giving rise to the reducing 5-hydroxy-5,6-uracil-6-yl radical. Interestingly, the two cis diastereomers of 6-hydroperoxy-5-hydroxy-5,6-dihydrouridine, two of the expected final products of the latter radicals in aerated aqueous solutions, have been prepared by trifluoroacetic acid treatment of uridine (3, R = H, = ribose) in the presence of H202 (equation 14). The mechanism of the reaction that involves transient formation of an epoxide-type intermediate followed by nucleophilic attack by a perhy-droxyl group at C6 presents similarities with the substitution of thymine bromohydrin by... [Pg.933]

Hi. Lysine. Gamma radiolysis of aerated aqueous solution of lysine (94) has been shown, as inferred from iodometric measurements, to give rise to hydroperoxides in a similar yield to that observed for valine and leucine. However, attempts to isolate by HPLC the peroxidic derivatives using the post-column derivatization chemiluminescence detection approach were unsuccessful. This was assumed to be due to the instability of the lysine hydroperoxides under the conditions of HPLC analysis. Indirect evidence for the OH-mediated formation of hydroperoxides was provided by the isolation of four hydroxylated derivatives of lysine as 9-fluoromethyl chloroformate (FMOC) derivatives . Interestingly, NaBILj reduction of the irradiated lysine solutions before FMOC derivatization is accompanied by a notable increase in the yields of hydroxylysine isomers. Among the latter oxidized compounds, 3-hydroxy lysine was characterized by extensive H NMR and ESI-MS measurements whereas one diastereomer of 4-hydroxylysine and the two isomeric forms of 5-hydroxylysine were identified by comparison of their HPLC features as FMOC derivatives with those of authentic samples prepared by chemical synthesis. A reasonable mechanism for the formation of the four different hydroxylysines and, therefore, of related hydroperoxides 98-100, involves initial OH-mediated hydrogen abstraction followed by O2 addition to the carbon-centered radicals 95-97 thus formed and subsequent reduction of the resulting peroxyl radicals (equation 55). [Pg.959]

In both the gassed (aerated) stirred tank and in the bubble column, the gas bubbles rise through a liquid, despite the mechanisms of bubble formation in the two types of apparatus being different. In this section, we shall consider some common aspects of the gas bubble - liquid systems in these two types of reactors. [Pg.106]

Aeration of this water, either as part of a pretreatment process or by recirculation of the water over the cooling tower, will tend to reduce or remove these gases but also will saturate the water with oxygen, which is a primary factor in both corrosion processes and certain inhibitor film-formation mechanisms. [Pg.36]

Environmental organic matter is a composite of humic and nonhumic substances, which is formed through operation and interactions of various biotic and abiotic processes. Humic substances are formed through both selected preservation (residue) and catalytic synthesis mechanisms. Both enzymatic and mineral catalyses contribute to the formation of humic substances in the environment. The relative importance of these catalytic reactions would depend on vegetation, microbial population and activity, enzymatic activity, mineralogical composition and surface chemistry of environmental particles, management practices, and environmental conditions. Selective preservation pathways would play a more important role in humification processes in poorly drained soils and lake sediments, compared with more aerated environmental conditions. [Pg.94]

In recent years attempts have been made to improve the gas-liquid mass transfer by changing the design of the mechanically agitated vessel. Mann et al. (1989) evaluated the use of horizontal baffles mounted near the gas-liquid surface. Horizontal baffles prevent vortex formation, generate less shear than standard baffles, increase gas holdup, and improve gas-liquid mass transfer. The latter two results are due to the rotational flow below the baffles, which causes gas bubbles to move upward in a spiral trajectory and induces surface aeration. For a 12-inch i.d. and 18-inch-tall stirred vessel, they showed kLat to be improved by a factor of 1.6 to 2.3 with 30 to 50% lower agitation power compared to the standard vessel. [Pg.20]

The effect of the halogen substituent (fluoro, chloro, bromo and iodo) on the yield and mechanism of 4-halophenol photolysis was investigated by Durand et al. [24], Transient spectroscopy in aerated aqueous solutions indicated the formation of p-benzoquinone O-oxide from each derivative except 4-iodophenol for which no transients were detected p-benzoquinone and hydroquinone were found as photoproducts for all four compounds. It was concluded that the carbene mechanism was valid for the whole series. Under continuous irradiation, the 4-halophenol degradation quantum yields were determined to be

fluorescence lifetimes decreased in the same order, from 2.1 ns for 4-fluorophenol to 0.4 ns for 4-chlorophenol and < 0.1 ns for 4-bromophenol. [Pg.166]


See other pages where Mechanical aeration formation is mentioned: [Pg.1424]    [Pg.238]    [Pg.108]    [Pg.1661]    [Pg.23]    [Pg.1657]    [Pg.1428]    [Pg.518]    [Pg.304]    [Pg.229]    [Pg.397]    [Pg.171]    [Pg.1002]    [Pg.363]    [Pg.74]    [Pg.32]    [Pg.945]    [Pg.275]    [Pg.232]    [Pg.167]    [Pg.315]    [Pg.60]    [Pg.168]    [Pg.920]    [Pg.938]    [Pg.939]    [Pg.954]    [Pg.968]    [Pg.920]    [Pg.938]    [Pg.939]    [Pg.954]    [Pg.959]    [Pg.968]    [Pg.136]    [Pg.456]    [Pg.102]    [Pg.415]    [Pg.127]    [Pg.205]   
See also in sourсe #XX -- [ Pg.216 ]




SEARCH



Aeration

Aerators

Mechanical aeration mechanisms

© 2024 chempedia.info