Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Measured heat flow calorimeter

Boiling point elevation (ATb) Increase in the boiling point caused by addition of a nonvolatile solute, 269-271 Bomb calorimeter Device used to measure heat flow, in which a reaction is carried out within a sealed metal container, 202-203... [Pg.683]

A calorimeter Is a device used to measure heat flows that accompany chemical processes. The basic features of a calorimeter include an Insulated container and a thermometer that monitors the temperature of the calorimeter. A block diagram of a calorimeter appears in Figure 6-15. In a calorimetry experiment, a chemical reaction takes place within the calorimeter, resulting in a heat flow between the chemicals and the calorimeter. The temperature of the calorimeter rises or falls in response to this heat flow. [Pg.388]

A survey of the literature shows that although very different calorimeters or microcalorimeters have been used for measuring heats of adsorption, most of them were of the adiabatic type, only a few were isothermal, and until recently (14, 15), none were typical heat-flow calorimeters. This results probably from the fact that heat-flow calorimetry was developed more recently than isothermal or adiabatic calorimetry (16, 17). We believe, however, from our experience, that heat-flow calorimeters present, for the measurement of heats of adsorption, qualities and advantages which are not met by other calorimeters. Without entering, at this point, upon a discussion of the respective merits of different adsorption calorimeters, let us indicate briefly that heat-flow calorimeters are particularly adapted to the investigation (1) of slow adsorption or reaction processes, (2) at moderate or high temperatures, and (3) on solids which present a poor thermal diffusivity. Heat-flow calorimetry appears thus to allow the study of adsorption or reaction processes which cannot be studied conveniently with the usual adiabatic or pseudoadiabatic, adsorption calorimeters. In this respect, heat-flow calorimetry should be considered, actually, as a new tool in adsorption and heterogeneous catalysis research. [Pg.193]

It appears therefore that during the operation of all usual calorimeters, temperature gradients are developed between the inner vessel and its surroundings. The resulting thermal head must be associated, in all cases, to heat flows. In isoperibol calorimeters, heat flows (called thermal leaks in this case) are minimized. Conversely, they must be facilitated in isothermal calorimeters. All heat-measuring devices could therefore be named heat-flow calorimeters. However, it must be noted that in isoperibol or isothermal calorimeters, the consequences of the heat flow are more easily determined than the heat flow itself. The temperature decrease... [Pg.195]

Since heat exchange between the calorimeter vessel and the heat sink is not hindered in a heat-flow calorimeter, the temperature changes produced by the thermal phenomenon under investigation are usually very small (less than 10 4 degree in a Calvet microcalorimeter, for instance) (23). For most practical purposes, measurements in a heat-flow calorimeter may be considered as performed under isothermal conditions. [Pg.196]

No theory can possibly take into account the arrangement of a real heat-flow calorimeter in all its details. Theoretical models of heat-flow calorimeters, which are necessarily simplified versions of the actual instruments, will therefore be used in the following calculations. It must be remarked that because of the limitations of the theory, no absolute measurements can be made with a heat-flow calorimeter, nor with any calorimeter. It is possible, however, to compare successive measurements with precision. A calorimetric study necessarily involves the calibration of the calorimeter and, upon this operation, depends the accuracy of the whole series of measurements. [Pg.206]

In any case, thermal inertia may be decreased but never completely removed (48). Data from heat-flow calorimeters must therefore be recorded in such a way that (1) the total amount of heat produced by the phenomenon under investigation is measured with precision, and (2) the correction of the thermograms is easily performed. [Pg.215]

The determination of these curves requires not only the measurement of small amounts of heat in a microcalorimeter, but also the simultaneous determination of the corresponding quantity of adsorbed gas. Volumetric measurements are to be preferred to gravimetric measurements for these determinations because it would be very difficult indeed to ensure a good, and reproducible, thermal contact between a sample of adsorbent, hanging from a balance beam, and the inner cell of a heat-flow calorimeter. [Pg.227]

In the various sections of this article, it has been attempted to show that heat-flow calorimetry does not present some of the theoretical or practical limitations which restrain the use of other calorimetric techniques in adsorption or heterogeneous catalysis studies. Provided that some relatively simple calibration tests and preliminary experiments, which have been described, are carefully made, the heat evolved during fast or slow adsorptions or surface interactions may be measured with precision in heat-flow calorimeters which are, moreover, particularly suitable for investigating surface phenomena on solids with a poor heat conductivity, as most industrial catalysts indeed are. The excellent stability of the zero reading, the high sensitivity level, and the remarkable fidelity which characterize many heat-flow microcalorimeters, and especially the Calvet microcalorimeters, permit, in most cases, the correct determination of the Q-0 curve—the energy spectrum of the adsorbent surface with respect to... [Pg.259]

Heat flow calorimeters simulate closely the operation of plant reactors. Removing the heat of reaction at the same rate as it is generated results in a constant reaction temperature. The temperature difference between the reactor and vessel jacket is a measure of the rate of heat production. [Pg.99]

Usually, isothermal calorimeters are used to measure heat flow in batch and semi-batch reactions. They can also measure the total heat generated by the reaction. With careful design, the calorimeter can simulate process variables such as addition rate, agitation, distillation and reflux. They are particularly useful for measuring the accumulation of unreacted materials in semi-batch reactions. Reaction conditions can be selected to minimize such accumulations. [Pg.99]

All modern heat flow calorimeters have twin cells thus, they operate in the differential mode. As mentioned earlier, this means that the thermopiles from the sample and the reference cell are connected in opposition, so that the measured output is the difference between the respective thermoelectric forces. Because the differential voltage is the only quantity to be measured, the auxiliary electronics of a heat flux instrument are fairly simple, as shown in the block diagram of figure 9.3. The main device is a nanovoltmeter interfaced to a computer for instrument control and data acquisition and handling. The remaining electronics of a microcalorimeter (not shown in figure 9.3) are related to the very accurate temperature control of the thermostat and, in some cases, with the... [Pg.141]

A marginal but very important application of the drop calorimetric method is that it also allows enthalpies of vaporization or sublimation [162,169] to be determined with very small samples. The procedure is similar to that described for the calibration with iodine—which indeed is a sublimation experiment. Other methods to determine vaporization or sublimation enthalpies using heat flow calorimeters have been described [170-172], Although they may provide more accurate data, the drop method is often preferred due to the simplicity of the experimental procedure and to the inexpensive additional hardware required. The drop method can also be used to measure heat capacities of solids or liquids above ambient temperature [1,173],... [Pg.146]

Regenass, W. Medium-scale heat flow calorimeter for measurement of heat release and cooling requirements under realistic reaction conditions. [Pg.368]

Use of medium-scale heat flow calorimeter for separate measurement of reaction heat removed via reaction vessel walls and via reflux condenser system, under fully realistic processing conditions, with data processing of the results is reported [2], More details are given elsewhere [3], A new computer controlled reaction calorimeter is described which has been developed for the laboratory study of all process aspects on 0.5-2 1 scale. It provides precise data on reaction kinetics, thermochemistry, and heat transfer. Its features are exemplified by a study of the (exothermic) nitration of benzaldehyde [4], A more recent review of reaction safety calorimetry gives some comment on possibly deceptive results. [5],... [Pg.368]

The isothermal and isoperibol calorimeters are well suited to measuring heat contents from which heat capacities may be subsequently derived, while the adiabatic and heat-flow calorimeters are best suited to the direct measurement of heat capacities and enthalpies of transformation. [Pg.79]

Microcalorimetry has gained importance as one of the most reliable method for the study of gas-solid interactions due to the development of commercial instrumentation able to measure small heat quantities and also the adsorbed amounts. There are basically three types of calorimeters sensitive enough (i.e., microcalorimeters) to measure differential heats of adsorption of simple gas molecules on powdered solids isoperibol calorimeters [131,132], constant temperature calorimeters [133], and heat-flow calorimeters [134,135]. During the early days of adsorption calorimetry, the most widely used calorimeters were of the isoperibol type [136-138] and their use in heterogeneous catalysis has been discussed in [134]. Many of these calorimeters consist of an inner vessel that is imperfectly insulated from its surroundings, the latter usually maintained at a constant temperature. These calorimeters usually do not have high resolution or accuracy. [Pg.212]

An alternative method of obtaining the gas evolution rate is to use an open test, venting to a constant pressure automated gas burette or to a thermal mass flowmeter111. However, these techniques have been developed to characterise the normal chemical reaction by measuring gas flow rates from a heat flow calorimeter... [Pg.139]

As was explained in the previous section, when an adsorbate contacts an adsorbent, heat is released. The thermal effect produced can be measured with the help of a thermocouple placed inside the adsorbent and referred at the room temperature (see Figure 6.3) [3,31,34,49], This is a version of the Tian-Calvet heat-flow calorimeter [50], This calorimetric technique is distinguished by the fact that the temperature difference between the tested adsorbent and a thermostat is measured. Consequently, in the Tian-Calvet heat-flow calorimeter, the thermal energy released in the adsorption cell is allowed to flow without restraint to the thermostat [3,31,34,49],... [Pg.285]

In this type of calorimeter, the heat flows through a thermocouple, and then the voltage potential, produced by the thermocouple and which is proportional to the thermal power, is amplified and recorded in an x-y plotter (see Figure 6.3) [3,31,34,49], The concrete thermal effect produced is the integral heat of adsorption, which is measured with the help of the heat-flow calorimeter using the equation [50]... [Pg.285]

The home-made heat-flow calorimeter used consisted of a high vacuum line for adsorption measurements applying the volumetric method. This equipment comprised of a Pyrex glass, vacuum system including a sample holder, a dead volume, a dose volume, a U-tube manometer, and a thermostat (Figure 6.3). In the sample holder, the adsorbent (thermostated with 0.1% of temperature fluctuation) is in contact with a chromel-alumel thermocouple included in an amplifier circuit (amplification factor 10), and connected with an x-y plotter [3,31,34,49], The calibration of the calorimeter, that is, the determination of the constant, k, was performed using the data reported in the literature for the adsorption of NH3 at 300 K in a Na-X zeolite [51]. [Pg.286]

Most calorimeters described above rely on a measurement of temperature (heat-Flow Calorimeters). The Tian182-Calvet183 calorimeters (some with a twin calorimeter design) use a thermopile (instead of a thermocouple) to measure heat flow directly (Fig. 11.78). [Pg.762]

Regenass [10] reviews a number of uses for heat flow calorimetry, particularly process development. The hydrolysis of acetic anhydride and the isomerization of trimethyl phosphite are used to illustrate how the technique can be used for process development. Kaarlsen and Villadsen [11,12] provide reviews of isothermal reaction calorimeters that have a sample volume of at least 0.1 L and are used to measure the rate of evolution of heat at a constant reaction temperature. Bourne et al. [13] show that the plant-scale heat transfer coefficient can be estimated rapidly and accurately from a few runs in a heat flow calorimeter. [Pg.141]

The heat-flow calorimeter of the Tian-Calvet type used for the determination of the adsorption heats of ammonia and the applied experimental technique were recently reported [9]. Ammonia adsorption was carried out at 80 C. All samples were pretreated under vacuum at 200 and 450 C, respectively, prior to any calorimetric measurement. [Pg.57]

RC measurements can be classified either as devices using jacketed vessels with control of the jacket temperature (heat balance calorimeters, heat flow calorimeters and temperature oscillation calorimeters) or as devices using a constant surrounding temperature, e.g., jacketed vessels with a constant jacket temperature, (isoperibolic calorimeters and power compensation calorimeters) such instruments may also feature single or double cells. [Pg.89]

Calorimeters with constant heat flow. Constant heat flow calorimeters are characterized by a constant temperature difference between the calorimetric vessel and the cover. To this group of calorimeters also belong the high-speed calorimeters for the measurement of heat capacities and the heats of modification transformation of substances, which are electrical conductors or semiconductors, where the heating is provided by their electrical resistance. [Pg.235]


See other pages where Measured heat flow calorimeter is mentioned: [Pg.202]    [Pg.196]    [Pg.214]    [Pg.228]    [Pg.233]    [Pg.237]    [Pg.152]    [Pg.169]    [Pg.571]    [Pg.2564]    [Pg.64]    [Pg.149]    [Pg.150]    [Pg.763]    [Pg.429]    [Pg.219]    [Pg.1584]    [Pg.78]   
See also in sourсe #XX -- [ Pg.93 ]




SEARCH



Calorimeter, flow

Calorimeters

Flow measurement

Flow measuring

Measured heat

Measurement heat flow

© 2024 chempedia.info