Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mean spherical approximation model

The simplest improvement is the mean spherical approximation model (Section 3.12), but a somewhat better version of this is what can be pictorially called the mound model, because instead of having an abrupt change from simple Coulomb attraction to total repulsion between ions of opposite sign when they meet, this model (Rasaiah and Friedman, 1968) allows for a softer collision before the plus infinity of the hard wall is met (Fig. 3.55). [Pg.334]

Motivated by a puzzling shape of the coexistence line, Kierlik et al. [27] have investigated the model with Lennard-Jones attractive forces between fluid particles as well as matrix particles and have shown that the mean spherical approximation (MSA) for the ROZ equations provides a qualitatively similar behavior to the MFA for adsorption isotherms. It has been shown, however, that the optimized random phase (ORPA) approximation (the MSA represents a particular case of this theory), if supplemented by the contribution of the second and third virial coefficients, yields a peculiar coexistence curve. It exhibits much more similarity to trends observed in... [Pg.306]

The correlation functions of the partly quenched system satisfy a set of replica Ornstein-Zernike equations (21)-(23). Each of them is a 2 x 2 matrix equation for the model in question. As in previous studies of ionic systems (see, e.g.. Refs. 69, 70), we denote the long-range terms of the pair correlation functions in ROZ equations by qij. Here we apply a linearized theory and assume that the long-range terms of the direct correlation functions are equal to the Coulomb potentials which are given by Eqs. (53)-(55). This assumption represents the mean spherical approximation for the model in question. Most importantly, (r) = 0 as mentioned before, the particles from different replicas do not interact. However, q]f r) 7 0 these functions describe screening effects of the ion-ion interactions between ions from different replicas mediated by the presence of charged obstacles, i.e., via the matrix. The functions q j (r) need to be obtained to apply them for proper renormalization of the ROZ equations for systems made of nonpoint ions. [Pg.338]

Recent developments of the chemical model of electrolyte solutions permit the extension of the validity range of transport equations up to high concentrations (c 1 mol L"1) and permit the representation of the conductivity maximum Knm in the framework of the mean spherical approximation (MSA) theory with the help of association constant KA and ionic distance parameter a, see Ref. [87] and the literature quoted there in. [Pg.486]

Carnie and Chan and Blum and Henderson have calculated the capacitance for an idealized model of an electrified interface using the mean spherical approximation (MSA). The interface is considered to consist of a solution of charged hard spheres in a solvent of hard spheres with embedded point dipoles, while the electrode is considered to be a uniformly charged hard wall whose dielectric constant is equal to that of the electrolyte (so that image forces need not be considered). [Pg.54]

This was averaged over the total distribution of ionic and dipolar spheres in the solution phase. Parameters in the calculations were chosen to simulate the Hg/DMSO and Ga/DMSO interfaces, since the mean-spherical approximation, used for the charge and dipole distributions in the solution, is not suited to describe hydrogen-bonded solvents. Some parameters still had to be chosen arbitrarily. It was found that the calculated capacitance depended crucially on d, the metal-solution distance. However, the capacitance was always greater for Ga than for Hg, partly because of the different electron densities on the two metals and partly because d depends on the crystallographic radius. The importance of d is specific to these models, because the solution is supposed (perhaps incorrectly see above) to begin at some distance away from the jellium edge. [Pg.83]

Considerable progress has been made in going beyond the simple Debye continuum model. Non-Debye relaxation solvents have been considered. Solvents with nonuniform dielectric properties, and translational diffusion have been analyzed. This is discussed in Section II. Furthermore, models which mimic microscopic solute/solvent structure (such as the linearized mean spherical approximation), but still allow for analytical evaluation have been extensively explored [38, 41-43], Finally, detailed molecular dynamics calculations have been made on the solvation of water [57, 58, 71]. [Pg.6]

A number of theoretical models for solvation dynamics that go beyond the simple Debye Onsager model have recently been developed. The simplest is an extension of Onsager model to include solvents with a non-Debye like (dielectric continuum and the probe can be represented by a spherical cavity. Newer theories allow for nonspherical probes [46], a nonuniform dielectric medium [45], a structured solvent represented by the mean spherical approximation [38-43], and other approaches (see below). Some of these are discussed in this section. Attempts are made where possible to emphasize the comparison between theory and experiment. [Pg.32]

An important advance in the understanding of microscopic solvation and Onsager s snowball picture has recently been made through the introduction of the linearized mean spherical approximation (MSA) model for the solvation dynamics around ionic and dipolar solutes. The first model of this type was introduced by Wolynes who extended the equilibrium linearized microscopic theory of solvation to handle dynamic solvation [38]. Wolynes further demonstrated that approximate solutions to the new dynamic MSA model were in accord with Onsager s predictions. Subsequently, Rips, Klafter, and Jortner published an exact solution for the solvation dynamics within the framework of the MSA [43], For an ionic solute, the exact results from these author s calculations are in agreement with Onsager s inverted snowball model and the previous numerical calculations of Calef and Wolynes [37]. Recently, the MSA model has been extended by Nichols and Calef and Rips et al. [39-43] to solvation of a dipolar solute. [Pg.35]

Models for solvation in water that allow for a structured solvent do indeed predict a multiexponential response. For instance, the dynamical mean spherical approximation (MSA) for water solvation predicts that solvation of an ion in water is well represented by two characteristic times [38]. Nonetheless, the specific relaxation times differ substantially from the observed behavior [33],... [Pg.38]

In the mean spherical approximation (MSA) treatment of the ion association in aqueous solutions, the linearity of the relative permittivity and of the hydrated cation diameters with the electrolyte concentration was taken into account and a good fit of the experimental activity and osmotic coefficient was obtained [72-75]. The MSA model was elaborated on the basis of cluster expansion considerations involving the direct correlation function the treatment can deal with the many-body interaction term and with a screening parameter and proved expedient for the interpretation of experimental results concerning inorganic electrolyte solutions [67,75-77]. [Pg.16]

Simonin, J.P., Bernard, O., and Blum, L. Real ionic solutions in the mean spherical approximation 3 osmotic and activity coefficients for associating electrolytes in the primitive model. 7. Phys. Chem.B. 1998, 102,4411 417. [Pg.25]

Modem theoretical work on solution properties often involves the use of mean spherical approximation, or MSA. This refers to models of events in solution in which relatively simple properties are assumed for the real entities present so that the mathematics can be solved analytically and the answer obtained in terms of an analytical solution rather than from a computer program. Thus, it is assumed that the ions concerned are spherical and incompressible. Reality is more complex than that implied by the SE approximations, but they nevertheless provide a rapid way to obtain experimentally consistent answers. [Pg.41]

The latest models propose to represent electrolyte solutions as a collections of hard spheres of equal size, ions, immersed in a dielectric continuum, the solvent. For such a system, what is called the Mean Spherical Approximation, MSA, has been successful in estimating osmotic and mean activity coefficients for aqueous 1 1 electrolyte solutions, and has provided a reasonable fit to experimental data for dilute solutions of concentrations up to -0.3 mol dm". The advantage in this approach is that only one... [Pg.326]

The so-called mean spherical approximation (MSA) treatment of the solvation energy should also be mentioned. Within the frame work of that model the electrostatic energy of ions is given by a Born-like expression [25], where the effective radius of the ion is considered to be the sum of the ionic radius and a correction term which depends not only on the solvent molecule diameter but also on the dielectric permittivity. Thus, the effective radius is a function of the frequency of the electromagnetic field. [Pg.225]

In addition to the short-range interactions between species in all solutions, long-range electrostatic interactions are found in electrolyte solutions. The deviation from ideal solution behavior caused by these electrostatic forces is usually calculated by some variation of the Debye-Huckel theory or the mean spherical approximation (MSA). These theories do not include terms for the short-range attractive and repulsive forces in the mixtures and are therefore usually combined with activity coefficient models or equations of state in order to describe the properties of electrolyte solutions. [Pg.221]

Abstract Analytical solution of the associative mean spherical approximation (AMSA) and the modified version of the mean spherical approximation - the mass action law (MSA-MAL) approach for ion and ion-dipole models are used to revise the concept of ion association in the theory of electrolyte solutions. In the considered approach in contrast to the traditional one both free and associated ion electrostatic contributions are taken into account and therefore the revised version of ion association concept is correct for weak and strong regimes of ion association. It is shown that AMSA theory is more preferable for the description of thermodynamic properties while the modified version of the MSA-MAL theory is more useful for the description of electrical properties. The capabilities of the developed approaches are illustrated by the description of thermodynamic and transport properties of electrolyte solutions in weakly polar solvents. The proposed theory is applied to explain the anomalous properties of electrical double layer in a low temperature region and for the treatment of the effect of electrolyte on the rate of intramolecular electron transfer. The revised concept of ion association is also used to describe the concentration dependence of dielectric constant in electrolyte solutions. [Pg.45]

In addition to the repulsive part of the potential given by Eq. (4), a short-range attraction between the macroions may also be present. This attraction is due to the van der Waals forces [17,18], and can be modelled in different ways. The OCF model can be solved for the macroion-macroion pair-distribution function and thermodynamic properties using various statistical-mechanical theories. One of the most popular is the mean spherical approximation (MSA) [40], The OCF model can be applied to the analysis of small-angle scattering data, where the results are obtained in terms of the macroion-macroion structure factor [35], The same approach can also be applied to thermodynamic properties Kalyuzhnyi and coworkers [41] analyzed Donnan pressure measurements for various globular proteins using a modification of this model which permits the protein molecules to form dimers (see Sec. 7). [Pg.203]

Bernard, O., and Blum, L. Thermodynamics of a model for flexible polyelectrolytes in the binding mean spherical approximation. Journal of Chemical Physics, 2000, 112, No. 16, p. 7227-7237. [Pg.227]

Blum, L., Kalyuzhnyi, Yu.V., Bernard, O., and Herrera-Pacheco, J.N. Sticky charged spheres in the mean-spherical approximation A model for colloids and polyelectrolytes. Journal of Physics - Condensed Matter, 1996, 8, No. 25A, p. A143-A167. [Pg.227]

Protsykevytch, I.A., Kalyuzhnyi, Yu.V., Holovko, M.F., and Blum, L. Solution of the polymer mean spherical approximation for the totally flexible sticky two-point electrolyte model. Journal of Molecular Physics, 1997, 73, No. 4, p. 1-20. [Pg.227]

Continuum dielectric models of solvation can be generalized to include some aspects of the solvent molecularity. This has lead to the dynamic mean spherical approximation which improves the agreement between these kind of theories and experimental observations."... [Pg.546]

Table 3.4 Experimental Value and Estimates According to the Born Model and Mean Spherical Approximation for the Gibbs Energy and Entropy of Solvation of the Alkali Metal Cations and Halide Anions at 25°C... Table 3.4 Experimental Value and Estimates According to the Born Model and Mean Spherical Approximation for the Gibbs Energy and Entropy of Solvation of the Alkali Metal Cations and Halide Anions at 25°C...
For separations outside the hard core, the direct correlation functions have to be approximated. Classic closure approximations recently applied to QA models axe the Percus-Yevick (PY) closure [301], the mean spherical approximation (MSA) [302], and the hypernetted chain (HNC) closure [30]. None of these relations, when formulated for the replicated system, contains any coupling between different species, and wc can directly proceed to the limit n — 0. The PY closure then implies... [Pg.357]


See other pages where Mean spherical approximation model is mentioned: [Pg.341]    [Pg.238]    [Pg.155]    [Pg.85]    [Pg.105]    [Pg.637]    [Pg.644]    [Pg.169]    [Pg.322]    [Pg.333]    [Pg.21]    [Pg.205]    [Pg.227]    [Pg.228]    [Pg.106]   
See also in sourсe #XX -- [ Pg.396 ]




SEARCH



Mean model

Mean spherical approximation

Mean spherical model

Models approximation

Spherical approximation

© 2024 chempedia.info