Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Matrices factor analysis

Multivariate methods, on the other hand, resolve the major sources by analyzing the entire ambient data matrix. Factor analysis, for example, examines elemental and sample correlations in the ambient data matrix. This analysis yields the minimum number of factors required to reproduce the ambient data matrix, their relative chemical composition and their contribution to the mass variability. A major limitation in common and principal component factor analysis is the abstract nature of the factors and the difficulty these methods have in relating these factors to real world sources. Hopke, et al. (13.14) have improved the methods ability to associate these abstract factors with controllable sources by combining source data from the F matrix, with Malinowski s target transformation factor analysis program. (15) Hopke, et al. (13,14) as well as Klelnman, et al. (10) have used the results of factor analysis along with multiple regression to quantify the source contributions. Their approach is similar to the chemical mass balance approach except they use a least squares fit of the total mass on different filters Instead of a least squares fit of the chemicals on an individual filter. [Pg.79]

Karanasiou AA, Siskos PA, Eleftheriadis K (2009) Assessment of source apportionment by Positive Matrix Factorization analysis on fine and coarse urban aerosol size fractions. Atmos Environ 43 3385-3395... [Pg.186]

Gu J, Pitz M, Schnelle-Kreis J, Diemer J, Reller A, Zimmermann R, Soentgen J, Stoelzel M, Wichmann H-E, Peters A, Cyrys J (2011) Source apportionment of ambient particles comparison of positive matrix factorization analysis applied to particle size distribution and chemical composition data. Atmos Environ 45(10) 1849-1857... [Pg.190]

KMO and Bartlett s tests of the questionnaire show that the value of KMO of the questionnaire is 0.701, more than 0.70, and the Bartlett sphere test shows the value of 2 is 4601.317, degree of freedom is 1770, the significance probability P equals to 0.00, less than 0.05, rejecting null hypothesis, suggesting the existence of a common factor in overall correlation matrix. Factor analysis is suitable. [Pg.674]

State-of-the-art for data evaluation of complex depth profile is the use of factor analysis. The acquired data can be compiled in a two-dimensional data matrix in a manner that the n intensity values N(E) or, in the derivative mode dN( )/d , respectively, of a spectrum recorded in the ith of a total of m sputter cycles are written in the ith column of the data matrix D. For the purpose of factor analysis, it now becomes necessary that the (n X m)-dimensional data matrix D can be expressed as a product of two matrices, i. e. the (n x k)-dimensional spectrum matrix R and the (k x m)-dimensional concentration matrix C, in which R in k columns contains the spectra of k components, and C in k rows contains the concentrations of the respective m sputter cycles, i. e. ... [Pg.20]

Factor analysis is a statistical technique that has been used to interpret numerous types of data. Hamer (1989), Rastogi et al. (1990, 1991, 1992), Fotopoulos et al. (1994), and Bonvin and Rippin (1990) have used it successfully for the identification of stoichiometries of complex reactions. The technique is applied to Eqn. (A-1) which are rewritten in matrix form ... [Pg.528]

Basically, we make a distinction between methods which are carried out in the space defined by the original variables (Section 34.4) or in the space defined by the principal components. A second distinction we can make is between full-rank methods (Section 34.2), which consider the whole matrix X, and evolutionary methods (Section 34.3) which analyse successive sub-matrices of X, taking into account the fact that the rows of X follow a certain order. A third distinction we make is between general methods of factor analysis which are applicable to any data matrix X, and specific methods which make use of specific properties of the pure factors. [Pg.251]

The aim of factor analysis is to calculate a rotation matrix R which rotates the abstract factors (V) (principal components) into interpretable factors. The various algorithms for factor analysis differ in the criterion to calculate the rotation matrix R. Two classes of rotation methods can be distinguished (i) rotation procedures based on general criteria which are not specific for the domain of the data and (ii) rotation procedures which use specific properties of the factors (e.g. non-negativity). [Pg.254]

In their fundamental paper on curve resolution of two-component systems, Lawton and Sylvestre [7] studied a data matrix of spectra recorded during the elution of two constituents. One can decide either to estimate the pure spectra (and derive from them the concentration profiles) or the pure elution profiles (and derive from them the spectra) by factor analysis. Curve resolution, as developed by Lawton and Sylvestre, is based on the evaluation of the scores in the PC-space. Because the scores of the spectra in the PC-space defined by the wavelengths have a clearer structure (e.g. a line or a curve) than the scores of the elution profiles in the PC-space defined by the elution times, curve resolution usually estimates pure spectra. Thereafter, the pure elution profiles are estimated from the estimated pure spectra. Because no information on the specific order of the spectra is used, curve resolution is also applicable when the sequence of the spectra is not in a specific order. [Pg.260]

In Section 34.2 we explained that factor analysis consists of a rotation of the principal components of the data matrix under certain constraints. When the objects in the data matrix are ordered, i.e. the compounds are present in certain row-windows, then the rotation matrix can be calculated in a straightforward way. For non-ordered spectra with three or less components, solution bands for the pure factors are obtained by curve resolution, which starts with looking for the purest spectra (i.e. rows) in the data matrix. In this section we discuss the VARDIA [27,28] technique which yields clusters of pure variables (columns), for a certain pure factor. [Pg.286]

The aim of all the foregoing methods of factor analysis is to decompose a data-set into physically meaningful factors, for instance pure spectra from a HPLC-DAD data-set. After those factors have been obtained, quantitation should be possible by calculating the contribution of each factor in the rows of the data matrix. By ITTFA (see Section 34.2.6) for example, one estimates the elution profiles of each individual compound. However, for quantitation the peak areas have to be correlated to the concentration by a calibration step. This is particularly important when using a diode array detector because the response factors (absorptivity) may considerably vary with the compound considered. Some methods of factor analysis require the presence of a pure variable for each factor. In that case quantitation becomes straightforward and does not need a multivariate approach because full selectivity is available. [Pg.298]

In 1978, Ho et al. [33] published an algorithm for rank annihilation factor analysis. The procedure requires two bilinear data sets, a calibration standard set Xj and a sample set X . The calibration set is obtained by measuring a standard mixture which contains known amounts of the analytes of interest. The sample set contains the measurements of the sample in which the analytes have to be quantified. Let us assume that we are only interested in one analyte. By a PCA we obtain the rank R of the data matrix X which is theoretically equal to 1 + n, where rt is the number of interfering compounds. Because the calibration set contains only one compound, its rank R is equal to one. [Pg.298]

Fig. 2.5. Measurement of pKas of serotonin by target factor analysis (TFA). (A) 3-D spectrum produced by serotonin in pH gradient experiment (equivalent to A matrix). (B) Molar absorptivity of three serotonin species (equivalent to E matrix). (C) Distribution of species (equivalent to C matrix). In this graph the three sets of data points denote the three... Fig. 2.5. Measurement of pKas of serotonin by target factor analysis (TFA). (A) 3-D spectrum produced by serotonin in pH gradient experiment (equivalent to A matrix). (B) Molar absorptivity of three serotonin species (equivalent to E matrix). (C) Distribution of species (equivalent to C matrix). In this graph the three sets of data points denote the three...
We now have the data necessary to calculate the singular value decomposition (SVD) for matrix A. The operation performed in SVD is sometimes referred to as eigenanal-ysis, principal components analysis, or factor analysis. If we perform SVD on the A matrix, the result is three matrices, termed the left singular values (LSV) matrix or the V matrix the singular values matrix (SVM) or the S matrix and the right singular values matrix (RSV) or the V matrix. [Pg.109]

Matlab is a matrix oriented language that is just about perfect for most data analysis tasks. Those readers who already know Matlab will agree with that statement. Those who have not used Matlab so far, will be amazed by the ease with which rather sophisticated programs can be developed. This strength of Matlab is a weak point in Excel. While Excel does include matrix operations, they are clumsy and probably for this reason, not well known and used. An additional shortcoming of Excel is the lack of functions for Factor Analysis or the Singular Value Decomposition. Nevertheless, Excel is very powerful and allows the analysis of fairly complex data. [Pg.2]

The Singular Value Decomposition of a matrix Y into the product USV is full of rich and powerful information. The model-free analyses we discussed so far are based on the examination of the matrices of eigenvectors U and V. Evolving Factor Analysis, EFA, is primarily based on the analysis of the matrix S of singular values. [Pg.259]

Principal Component Analysis (PCA) is the most popular technique of multivariate analysis used in environmental chemistry and toxicology [313-316]. Both PCA and factor analysis (FA) aim to reduce the dimensionality of a set of data but the approaches to do so are different for the two techniques. Each provides a different insight into the data structure, with PCA concentrating on explaining the diagonal elements of the covariance matrix, while FA the off-diagonal elements [313, 316-319]. Theoretically, PCA corresponds to a mathematical decomposition of the descriptor matrix,X, into means (xk), scores (fia), loadings (pak), and residuals (eik), which can be expressed as... [Pg.268]

On the other hand, factor analysis involves other manipulations of the eigen vectors and aims to gain insight into the structure of a multidimensional data set. The use of this technique was first proposed in biological structure-activity relationship (i. e., SAR) and illustrated with an analysis of the activities of 21 di-phenylaminopropanol derivatives in 11 biological tests [116-119, 289]. This method has been more commonly used to determine the intrinsic dimensionality of certain experimentally determined chemical properties which are the number of fundamental factors required to account for the variance. One of the best FA techniques is the Q-mode, which is based on grouping a multivariate data set based on the data structure defined by the similarity between samples [1, 313-316]. It is devoted exclusively to the interpretation of the inter-object relationships in a data set, rather than to the inter-variable (or covariance) relationships explored with R-mode factor analysis. The measure of similarity used is the cosine theta matrix, i. e., the matrix whose elements are the cosine of the angles between all sample pairs [1,313-316]. [Pg.269]

More commonly, we are faced with the need for mathematical resolution of components, using their different patterns (or spectra) in the various dimensions. That is, literally, mathematical analysis must supplement the chemical or physical analysis. In this case, we very often initially lack sufficient model information for a rigorous analysis, and a number of methods have evolved to "explore the data", such as principal components and "self-modeling analysis (21), cross correlation (22). Fourier and discrete (Hadamard,. . . ) transforms (23) digital filtering (24), rank annihilation (25), factor analysis (26), and data matrix ratioing (27). [Pg.68]

The enthusiastic search for more and more transcription factors that ensued in the following decade diverted the attention of many molecular biologists from the fundamental problem of how transcription can be initiated or proceed in a chromatin matrix. However, three lines of research continued throughout the 1980s and 1990s that have converged with transcription factor analysis to build the detailed, if still confusing picture we have today. [Pg.8]

Basic Concepts. The goal of factor and components analysis is to simplify the quantitative description of a system by determining the minimum number of new variables necessary to reproduce various attributes of the data. Principal components analysis attempts to maximally reproduce the variance in the system while factor analysis tries to maximally reproduce the matrix of correlations. These procedures reduce the original data matrix from one having m variables necessary to describe the n samples to a matrix with p components or factors (p[Pg.26]

Both component and factor analysis as defined by equations 17 and 18 aim at the identification of the causes of variation in the system. The analyses are performed somewhat differently. For the principal components analysis, the matrix of correlations defined by equation 10 is used. For the factor analysis, the diagonal elements of the correlation matrix that normally would have a value of one are replaced by estimates of the amount of variance that is within the common factor space. This problem of separation of variance and estimation of the matrix elements is discussed by Hopke et al. (4). [Pg.27]


See other pages where Matrices factor analysis is mentioned: [Pg.27]    [Pg.229]    [Pg.698]    [Pg.702]    [Pg.168]    [Pg.201]    [Pg.95]    [Pg.171]    [Pg.247]    [Pg.249]    [Pg.251]    [Pg.256]    [Pg.274]    [Pg.256]    [Pg.338]    [Pg.214]    [Pg.507]    [Pg.258]    [Pg.166]    [Pg.17]    [Pg.21]    [Pg.58]    [Pg.276]    [Pg.91]   
See also in sourсe #XX -- [ Pg.60 ]




SEARCH



Factor analysis

Matrix factor

© 2024 chempedia.info