Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Materials properties linear viscoelasticity

Contents Chain Configuration in Amorphous Polymer Systems. Material Properties of Viscoelastic Liquids. Molecular Models in Polymer Rheology. Experimental Results on Linear Viscoelastic Behavior. Molecular Entan-lement Theories of Linear iscoelastic Behavior. Entanglement in Cross-linked Systems. Non-linear Viscoelastic-Properties. [Pg.4]

Material Functions—Linear Viscoelasticity. One of the most important aspects of both the phenomenological and the molecular theories of viscoelasticity is the ability to characterize the material functions. The material functions are the properties that allow one to relate the stress response to a strain (deformation) history and vice versa through a constitutive equation. In linear viscoelasticity theory, generally isotropic descriptions are dealt with that is, the properties are the same in all directions. However, a material may be anisotropic and still have properties that vary with the direction of the test (7). Here only the isotropic case is considered and it is recognized that straight forward extensions can be made to the anisotropic case. In addition, only homogeneous materials, for which the properties are the same at all points within the material, only are discussed. [Pg.1360]

At sufficiently low strain, most polymer materials exhibit a linear viscoelastic response and, once the appropriate strain amplitude has been determined through a preliminary strain sweep test, valid frequency sweep tests can be performed. Filled mbber compounds however hardly exhibit a linear viscoelastic response when submitted to harmonic strains and the current practice consists in testing such materials at the lowest permitted strain for satisfactory reproducibility an approach that obviously provides apparent material properties, at best. From a fundamental point of view, for instance in terms of material sciences, such measurements have a limited meaning because theoretical relationships that relate material structure to properties have so far been established only in the linear viscoelastic domain. Nevertheless, experience proves that apparent test results can be well reproducible and related to a number of other viscoelastic effects, including certain processing phenomena. [Pg.820]

Analyses of the results obtained depend on the shape of the specimen, whether or not the distribution of mass in the specimen is accounted for and the assumed model used to represent the linear viscoelastic properties of the material. The following terms relate to analyses which generally assume small deformations, specimens of uniform cross-section, non-distributed mass and a Voigt-Kelvin solid. These are the conventional assumptions. [Pg.171]

The mechanical response of polypropylene foam was studied over a wide range of strain rates and the linear and non-linear viscoelastic behaviour was analysed. The material was tested in creep and dynamic mechanical experiments and a correlation between strain rate effects and viscoelastic properties of the foam was obtained using viscoelasticity theory and separating strain and time effects. A scheme for the prediction of the stress-strain curve at any strain rate was developed in which a strain rate-dependent scaling factor was introduced. An energy absorption diagram was constructed. 14 refs. [Pg.46]

The exact solutions of the linear elasticity theory only apply for small strains, and under idealised loading conditions, so that they should at best only be treated as approximations to the real behaviour of materials under test conditions. In order to describe a material fully we need to know all the elastic constants and, in the case of linear viscoelastic materials, relaxed and unrelaxed values of each, a distribution of relaxation times and an activation energy. While for non-linear viscoelastic materials we cannot obtain a full description of the mechanical properties. [Pg.81]

Our reason for stressing the concept of representative volume element is that it seems to provide a valuable dividing boundary between continuum theories and molecular or microscopic theories. For scales larger than the RVE we can use continuum mechanics (classical and large strain elasticity, linear and non-linear viscoelasticity) and derive from experiment useful and reproducible properties of the material as a whole and of the RVE in particular. Below the scale of the RVE we must consider the micromechanics if we can - which may still be analysable by continuum theories but which eventually must be studied by the consideration of the forces and displacements of polymer chains and their interactions. [Pg.97]

The calculation of residual stresses in the polymerization process during the formation of an amorphous material was formulated earlier.12 The theory was based on a model of a linear viscoelastic material with properties dependent on temperature T and the degree of conversion p. In this model the effect of the degree of conversion was treated by a new "polymerization-time" superposition method, which is analogous to the temperature-time superposition discussed earlier. [Pg.86]

In spite of the apparent sensitivity to the material properties, the direct assignment of the phase contrast to variation in the chemical composition or a specific property of the surface is hardly possible. Considerable difficulties for theoretical examination of the tapping mode result from several factors (i) the abrupt transition from an attractive force regime to strong repulsion which acts for a short moment of the oscillation period, (ii) localisation of the tip-sample interaction in a nanoscopic contact area, (iii) the non-linear variation of both attractive forces and mechanical compliance in the repulsive regime, and (iv) the interdependence of the material properties (viscoelasticity, adhesion, friction) and scanning parameters (amplitude, frequency, cantilever position). The interpretation of the phase and amplitude images becomes especially intricate for viscoelastic polymers. [Pg.86]

Linear viscoelasticity is the simplest type of viscoelastic behavior, in which viscoelastic properties are independent of the magnitude of applied stress or strain (Barnes et al., 1989 Gunasekaran and Ak, 2002). Linear viscoelasticity is usually exhibited by food materials at very small strains (Rao, 1992) that cause negligible damage to the food s structure the phenomenon must therefore be investigated experimentally using small deformation test methods. [Pg.759]

When a sinusoidal strain is imposed on a linear viscoelastic material, e.g., unfilled rubbers, a sinusoidal stress response will result and the dynamic mechanical properties depend only upon temperature and frequency, independent of the type of deformation (constant strain, constant stress, or constant energy). However, the situation changes in the case of filled rubbers. In the following, we mainly discuss carbon black filled rubbers because carbon black is the most widespread filler in rubber products, as for example, automotive tires and vibration mounts. The presence of carbon black filler introduces, in addition, a dependence of the dynamic mechanical properties upon dynamic strain amplitude. This is the reason why carbon black filled rubbers are considered as nonlinear viscoelastic materials. The term non-linear viscoelasticity will be discussed later in more detail. [Pg.3]

It is necessary to state more precisely and to clarify the use of the term nonlinear dynamical behavior of filled rubbers. This property should not be confused with the fact that rubbers are highly non-linear elastic materials under static conditions as seen in the typical stress-strain curves. The use of linear viscoelastic parameters, G and G", to describe the behavior of dynamic amplitude dependent rubbers maybe considered paradoxical in itself, because storage and loss modulus are defined only in terms of linear behavior. [Pg.4]

As previously noted, this chapter has been concerned mainly with those models for the creep of ceramic matrix composite materials which feature some novelty that cannot be represented simply by taking models for the linear elastic properties of a composite and, through transformation, turning the model into a linear viscoelastic one. If this were done, the coverage of models would be much more comprehensive since elastic models for composites abound. Instead, it was decided to concentrate mainly on phenomena which cannot be treated in this manner. However, it was necessary to introduce a few models for materials with linear matrices which could have been developed by the transformation route. Otherwise, the discussion of some novel aspects such as fiber brittle failure or the comparison of non-linear materials with linear ones would have been incomprehensible. To summarize those models which could have been introduced by the transformation route, it can be stated that the inverse of the composite linear elastic modulus can be used to represent a linear steady-state creep coefficient when the kinematics are switched from strain to strain rate in the relevant model. [Pg.329]

The engineering property that is of interest for most of these applications, the modulus of elasticity, is the ratio of unit stress to corresponding unit strain in tension, compression, or shear. For rigid engineering materials, unique values are characteristic over the useful stress and temperature ranges of the material. This is not true of natural and synthetic rubbers. In particular, for sinusoidal deformations at small strains under essentially isothermal conditions, elastomers approximate a linear viscoelastic... [Pg.63]

It is customary in dealing with linear (or linearized) behavior of dynamical systems to describe the properties of viscoelastic materials as complex quantities (2). For example, we write Young s modulus... [Pg.319]

One may use the linear viscoelastic data as a pure rheological characterization, and relate the viscoelastic parameters to some processing or final properties of the material inder study. Furthermore, linear viscoelasticity and nonlinear viscoelasticity are not different fields that would be disconnected in most cases, a linear viscoelastic function (relaxation fimction, memory function or distribution of relaxation times) is used as the kernel of non linear constitutive equations, either of the differential or integral form. That means that if we could define a general nonlinear constitutive equation that would work for all flexible chains, the knowledge of a single linear viscoelastic function would lead to all rheological properties. [Pg.95]

In this book, we review the most basic distinctions and similarities among the rheological (or flow) properties of various complex fluids. We focus especially on their linear viscoelastic behavior, as measured by the frequency-dependent storage and loss moduli G and G" (see Section 1.3.1.4), and on the flow curve— that is, the relationship between the "shear viscosity q and the shear rate y. The storage and loss moduli reveal the mechanical properties of the material at rest, while the flow curve shows how the material changes in response to continuous deformation. A measurement of G and G" is often the most useful way of mechanically characterizing a complex material, while the flow curve q(y ) shows how readily the material can be processed, or shaped into a useful product. The... [Pg.4]

Polymeric fluids are the most studied of all complex fluids. Their rich rheological behavior is deservedly the topic of numerous books and is much too vast a subject to be covered in detail here. We must therefore limit ourselves to an overview. The interested reader can obtain more thorough presentations in the following references a book by Ferry (1980), which concentrates on the linear viscoelasticity of polymeric fluids, a pair of books by Bird et al. (1987a,b), which cover polymer constitutive equations, molecular models, and elementary fluid mechanics, books by Tanner (1985), by Dealy and Wissbrun (1990), and by Baird and Dimitris (1995), which emphasize kinematics and polymer processing flows, a book by Macosko (1994) focusing on measurement methods and a book by Larson (1988) on polymer constitutive equations. Parts of this present chapter are condensed versions of material from Larson (1988). The static properties of flexible polymer molecules are discussed in Section 2.2.3 their chemistry is described in Flory (1953). [Pg.107]

The viscoelastic nature of polymers generally determines rate and temperature dependence of their mechanical properties. At low strain levels, i.e. in a linear regime, this dependence is well described by intrinsic material properties defined within constitutive viscoelastic laws [1]. At high strains, in presence of failure processes, such as yielding or fracture, it is more difficult to establish a constitutive behaviour as well as to define material properties able to intrinsically characterise the failure process and its possible viscoelastic features. [Pg.90]

Materials can show linear and nonlinear viscoelastic behavior. If the response of the sample (e.g., shear strain rate) is proportional to the strength of the defined signal (e.g., shear stress), i.e., if the superposition principle applies, then the measurements were undertaken in the linear viscoelastic range. For example, the increase in shear stress by a factor of two will double the shear strain rate. All differential equations (for example, Eq. (13)) are linear. The constants in these equations, such as viscosity or modulus of rigidity, will not change when the experimental parameters are varied. As a consequence, the range in which the experimental variables can be modified is usually quite small. It is important that the experimenter checks that the test variables indeed lie in the linear viscoelastic region. If this is achieved, the quality control of materials on the basis of viscoelastic properties is much more reproducible than the use of simple viscosity measurements. Non-linear viscoelasticity experiments are more difficult to model and hence rarely used compared to linear viscoelasticity models. [Pg.3134]


See other pages where Materials properties linear viscoelasticity is mentioned: [Pg.424]    [Pg.90]    [Pg.86]    [Pg.785]    [Pg.35]    [Pg.174]    [Pg.190]    [Pg.207]    [Pg.139]    [Pg.147]    [Pg.149]    [Pg.221]    [Pg.31]    [Pg.261]    [Pg.30]    [Pg.292]    [Pg.26]    [Pg.55]    [Pg.299]    [Pg.86]    [Pg.306]    [Pg.111]    [Pg.665]    [Pg.142]    [Pg.340]    [Pg.172]    [Pg.46]    [Pg.3137]    [Pg.91]    [Pg.1488]   
See also in sourсe #XX -- [ Pg.2 , Pg.1362 , Pg.1363 , Pg.1364 , Pg.1365 , Pg.1366 , Pg.1367 ]




SEARCH



Linear viscoelastic materials

Linear viscoelastic properties

Linear viscoelasticity properties

Materials linear

Viscoelastic materials

Viscoelastic properties

Viscoelasticity properties

© 2024 chempedia.info