Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Materials dielectric/ferroelectric

In the broad range of ceramic materials that are used for electrical and electronic apphcations, each category of material exhibits unique property characteristics which directiy reflect composition, processing, and microstmcture. Detailed treatment is given primarily to those property characteristics relating to insulation behavior and electrical conduction processes. Further details concerning the more specialized electrical behavior in ceramic materials, eg, polarization, dielectric, ferroelectric, piezoelectric, electrooptic, and magnetic phenomena, are covered in References 1—9. [Pg.349]

Dielectrics, Ferroelectricity, and Piezoelectricity. A dielectric is a material separating two charged bodies, as illustrated in Figure 6.22b. For a substance... [Pg.562]

If we can combine ferroelectrically polarizable guest molecules with PCPMs, then we can obtain new types of multiferroic materials, where ferroelectricity and ferromagnetism coexist. Such multifunctional materials have recently aroused increasing interest from the viewpoint of the development of new materials with very large magnetoelectric effects. [Mn3(HCOO)6] EtOH is considered to be the first ferroelectric PCP.182 Because the desolvated compound [Mn3(HCOO)6] shows a very small and almost temperature-independent dielectric constant, irrespective of the direction of the electric field,183 the observed ferroelectric property is considered to come mainly from the guest EtOH molecules. [Pg.263]

In some dielectrics, such as pyroelectric and ferroelectric materials, permanent electric dipoles exist in the absence of an external electric field. In these latter types of materials, dielectric properties are related to the way in which the permanent electric dipoles, as well as the other electrons and atomic nuclei, respond to the applied electric field. [Pg.80]

Table 27.5 lists applications of some of the most commercially important mixed metal, perovskite-t5q)e oxides, and illustrates that it is the dielectric, ferroelectric, piezoelectric (see Section 13.9) and pyroelectric properties of these materials that are exploited in the electronics industry. [Pg.824]

CONCEPTS More about relaxation process within solids Typical loss peaks are broader and asymmetric in solids, and frequency is often too low compared with Debye peaks. A model using hypotheses based on nearest-neighbor interactions predicts a loss peak with broader width, asymmetric shape, and lower frequency [27]. This behavior is well suited to polymeric, glassy materials and ferroelectrics. Low temperature loss peaks typically observed for polymers need many-body interactions to be obtained. Although current understanding of these processes is not yet sufficient to enable quantitative forecasting the dielectric properties of solids may offer insight into the mechanisms of many-body interactions. [Pg.40]

Pyroelectric materials change their electric polarization as a function of temperature. These materials may be insulators (dielectrics), ferroelectric materials, or semiconductors. A dielectric placed in an electrostatic field becomes polarized with the magnitude of the induced polarization depending on the dielectric constant. The induced polarization generally disappears when the field is removed. Pyroelectric materials, however, stay polarized and the polarization is temperature dependent. [Pg.240]

A ferroelectric perovskite, as distinct from a normal dielectric, has a permanent spontaneous polarisation that can be switched in direction by the application of an external electric field. All ferroelectrics are also piezoelectrics and the majority of commercially important piezoelectric materials are ferroelectric perovskites. [Pg.182]

Ferroelectric materials, especially polyciystalhne ceramics, are utihzed in various devices such as high-permittivity dielectrics, ferroelectric memories, pyroelectric sensors, piezoelectric transducers, electrooptic devices, and PTC (positive temperature coefficient of resistivity) components. [Pg.12]

In this chapter, I will conduct a review on some of the fundamental material properties of relaxor ferroelectric PLZT ceramics, which include the dielectric, ferroelectric, electromechanical, electro-optical and thermo-optical behaviours. Further details on each section can be found in the references (Levesque and Sabat 2011 Sabat, Rochon, and Mukherjee 2008 Sabat and Rochon 2009b Sabat and Rochon 2009c Sabat and Rochon 2009a). [Pg.3]

For high-speed response, thinning the LC layer is one conceivable method. Thus it is necessary to increase the optical properties of the LC materials, which in turn necessitates future material development. Ferroelectric LCs use the interaction of the electric field with the spontaneous polarization of the LC molecules for highspeed switching, but the problems are the stable molecular alignment in thin-gap cells and the increase of the speed of the current supply of the drive elements because of the relatively high dielectric constant of ferroelectrics, as compared to a nematic LC. [Pg.151]

The most important materials among nonlinear dielectrics are ferroelectrics which can exhibit a spontaneous polarization PI in the absence of an external electric field and which can spHt into spontaneously polarized regions known as domains (5). It is evident that in the ferroelectric the domain states differ in orientation of spontaneous electric polarization, which are in equiUbrium thermodynamically, and that the ferroelectric character is estabUshed when one domain state can be transformed to another by a suitably directed external electric field (6). It is the reorientabiUty of the domain state polarizations that distinguishes ferroelectrics as a subgroup of materials from the 10-polar-point symmetry group of pyroelectric crystals (7—9). [Pg.202]

At the temperatures of the phase transitions, maxima of the dielectric constant up to 10,000 are found. Moreover, ia the ferroelectric state below T the material becomes pyroelectric and shows high piezoelectric activity. [Pg.204]

Multilayer Capacitors. Multilayer capacitors (MLC), at greater than 30 biUion units per year, outnumber any other ferroelectric device in production. Multilayer capacitors consist of alternating layers of dielectric material and metal electrodes, as shown in Figure 7. The reason for this configuration is miniaturization of the capacitor. Capacitance is given by... [Pg.206]

Barium carbonate also reacts with titania to form barium titanate [12047-27-7] BaTiO, a ferroelectric material with a very high dielectric constant (see Ferroelectrics). Barium titanate is best manufactured as a single-phase composition by a soHd-state sintering technique. The asymmetrical perovskite stmcture of the titanate develops a potential difference when compressed in specific crystallographic directions, and vice versa. This material is most widely used for its strong piezoelectric characteristics in transducers for ultrasonic technical appHcations such as the emulsification of Hquids, mixing of powders and paints, and homogenization of milk, or in sonar devices (see Piezoelectrics Ultrasonics). [Pg.480]

Historically, materials based on doped barium titanate were used to achieve dielectric constants as high as 2,000 to 10,000. The high dielectric constants result from ionic polarization and the stress enhancement of k associated with the fine-grain size of the material. The specific dielectric properties are obtained through compositional modifications, ie, the inclusion of various additives at different doping levels. For example, additions of strontium titanate to barium titanate shift the Curie point, the temperature at which the ferroelectric to paraelectric phase transition occurs and the maximum dielectric constant is typically observed, to lower temperature as shown in Figure 1 (2). [Pg.342]

Because of very high dielectric constants k > 20, 000), lead-based relaxor ferroelectrics, Pb(B, B2)02, where B is typically a low valence cation and B2 is a high valence cation, have been iavestigated for multilayer capacitor appHcations. Relaxor ferroelectrics are dielectric materials that display frequency dependent dielectric constant versus temperature behavior near the Curie transition. Dielectric properties result from the compositional disorder ia the B and B2 cation distribution and the associated dipolar and ferroelectric polarization mechanisms. Close control of the processiag conditions is requited for property optimization. Capacitor compositions are often based on lead magnesium niobate (PMN), Pb(Mg2 3Nb2 3)02, and lead ziac niobate (PZN), Pb(Zn 3Nb2 3)03. [Pg.343]

Ferroelectrics. Ferroelectrics, materials that display a spontaneous polarization ia the abseace of an appHed electric field, also display pyroelectric and piezoelectric behavior. The distinguishing characteristic of ferroelectrics, however, is that the spontaneous polarization must be re-orientable with the appHcation of an electric field of a magnitude lower than the dielectric breakdown strength of the material. [Pg.344]

Ferroelectric Thin-Film Devices. Since 1989, the study of ferroelectric thin films has been an area of increasing growth. The compositions studied most extensively are in the PZT/PLZT family, although BaTiO, KNbO, and relaxor ferroelectric materials, such as PMN and PZN, have also been investigated. Solution deposition is the most frequentiy utilized fabrication process, because of the lower initial capital investment cost, ease of film fabrication, and the excellent dielectric and ferroelectric properties that result. [Pg.347]


See other pages where Materials dielectric/ferroelectric is mentioned: [Pg.301]    [Pg.342]    [Pg.572]    [Pg.387]    [Pg.371]    [Pg.582]    [Pg.614]    [Pg.327]    [Pg.740]    [Pg.101]    [Pg.212]    [Pg.26]    [Pg.535]    [Pg.5672]    [Pg.610]    [Pg.65]    [Pg.5]    [Pg.607]    [Pg.224]    [Pg.767]    [Pg.768]    [Pg.203]    [Pg.203]    [Pg.209]    [Pg.128]    [Pg.340]    [Pg.344]    [Pg.344]    [Pg.360]   
See also in sourсe #XX -- [ Pg.371 ]




SEARCH



Ferroelectric materials

Ferroelectrics materials

© 2024 chempedia.info