Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Material modeling linear viscoelasticity

Many investigators beheve that the Bingham model accounts best for observations of electrorheological behavior (116,118), but other models have also been proposed (116,119). There is considerable evidence that ER materials behave as linear viscoelastic fluids while under the influence of electric field (120) thus it appears that these materials maybe thought of as elastic Bingham fluids. [Pg.175]

The simplest theoretical model proposed to predict the strain response to a complex stress history is the Boltzmann Superposition Principle. Basically this principle proposes that for a linear viscoelastic material, the strain response to a complex loading history is simply the algebraic sum of the strains due to each step in load. Implied in this principle is the idea that the behaviour of a plastic is a function of its entire loading history. There are two situations to consider. [Pg.95]

It is apparent therefore that the Superposition Principle is a convenient method of analysing complex stress systems. However, it should not be forgotten that the principle is based on the assumption of linear viscoelasticity which is quite inapplicable at the higher stress levels and the accuracy of the predictions will reflect the accuracy with which the equation for modulus (equation (2.33)) fits the experimental creep data for the material. In Examples (2.13) and (2.14) a simple equation for modulus was selected in order to illustrate the method of solution. More accurate predictions could have been made if the modulus equation for the combined Maxwell/Kelvin model or the Standard Linear Solid had been used. [Pg.103]

This material is a linear viscoelastic solid and is described by the multiple Maxwell model with an additional term, the spring elasticity... [Pg.115]

We have developed the idea that we can describe linear viscoelastic materials by a sum of Maxwell models. These models are the most appropriate for describing the response of a body to an applied strain. The same ideas apply to a sum of Kelvin models, which are more appropriately applied to stress controlled experiments. A combination of these models enables us to predict the results of different experiments. If we were able to predict the form of the model from the chemical constituents of the system we could predict all the viscoelastic responses in shear. We know that when a strain is applied to a viscoelastic material the molecules and particles that form the system gradual diffuse to relax the applied strain. For example, consider a solution of polymer... [Pg.116]

These two mathematical Equations (4.59) and (4.60) illustrate an important feature about linear viscoelastic measurements, i.e. the central role played by the relaxation function and the compliance. These terms can be used to describe the response of a material to any deformation history. If these can be modelled in terms of the chemistry of the system the complete linear rheological response of our material can be obtained. [Pg.121]

An important and sometimes overlooked feature of all linear viscoelastic liquids that follow a Maxwell response is that they exhibit anti-thixo-tropic behaviour. That is if a constant shear rate is applied to a material that behaves as a Maxwell model the viscosity increases with time up to a constant value. We have seen in the previous examples that as the shear rate is applied the stress progressively increases to a maximum value. The approach we should adopt is to use the Boltzmann Superposition Principle. Initially we apply a continuous shear rate until a steady state... [Pg.125]

Firstly, it helps to provide a cross-check on whether the response of the material is linear or can be treated as such. Sometimes a material is so fragile that it is not possible to apply a low enough strain or stress to obtain a linear response. However, it is also possible to find non-linear responses with a stress/strain relationship that will allow satisfactory application of some of the basic features of linear viscoelasticity. Comparison between the transformed data and the experiment will indicate the validity of the application of linear models. [Pg.132]

The most surprising result is that such simple non-linear relaxation behaviour can give rise to such complex behaviour of the stress with time. In Figure 6.3(b) there is a peak termed a stress overshoot . This illustrates that materials following very simple rules can show very complex behaviour. The sample modelled here, it could be argued, can show both thixotropic and anti-thixotropic behaviour. One of the most frequently made non-linear viscoelastic measurements is the thixotropic loop. This involves increasing the shear rate linearly with time to a given... [Pg.223]

Contents Chain Configuration in Amorphous Polymer Systems. Material Properties of Viscoelastic Liquids. Molecular Models in Polymer Rheology. Experimental Results on Linear Viscoelastic Behavior. Molecular Entan-lement Theories of Linear iscoelastic Behavior. Entanglement in Cross-linked Systems. Non-linear Viscoelastic-Properties. [Pg.4]

Note 4 Comparison with the general definition of linear viscoelastic behaviour shows that the polynomial /"(D) is of order zero, 0(D) is of order one, ago = a and a = p. Hence, a material described by the Voigt-Kelvin model is a solid (go > 0) without instantaneous elasticity (/"(D) is a polynomial of order one less than 0(D)). [Pg.164]

Analyses of the results obtained depend on the shape of the specimen, whether or not the distribution of mass in the specimen is accounted for and the assumed model used to represent the linear viscoelastic properties of the material. The following terms relate to analyses which generally assume small deformations, specimens of uniform cross-section, non-distributed mass and a Voigt-Kelvin solid. These are the conventional assumptions. [Pg.171]

Real (viscoelastic) materials give an intermediate response that is an exponential curve. The exponential time constants associated with the curve are used to approximate the relaxation times of the material itself. Thus, the shape of the output curve is analyzed to give viscoelastic information, although this model fitting is only strictly legitimate in the linear viscoelastic region. Workers have shown that the mechanical parts of the models (springs and dashpots) can be associated with specific parts of a food s makeup. [Pg.1223]

The calculation of residual stresses in the polymerization process during the formation of an amorphous material was formulated earlier.12 The theory was based on a model of a linear viscoelastic material with properties dependent on temperature T and the degree of conversion p. In this model the effect of the degree of conversion was treated by a new "polymerization-time" superposition method, which is analogous to the temperature-time superposition discussed earlier. [Pg.86]

Viscoelasticity has already been introduced in Chapter 1, based on linear viscoelasticity. However, in polymer processing large deformations are imposed on the material, requiring the use of non-linear viscoelastic models. There are two types of general non-linear viscoelastic flow models the differential type and the integral type. [Pg.75]

On a global scale, the linear viscoelastic behavior of the polymer chains in the nanocomposites, as detected by conventional rheometry, is dramatically altered when the chains are tethered to the surface of the silicate or are in close proximity to the silicate layers as in intercalated nanocomposites. Some of these systems show close analogies to other intrinsically anisotropic materials such as block copolymers and smectic liquid crystalline polymers and provide model systems to understand the dynamics of polymer brushes. Finally, the polymer melt-brushes exhibit intriguing non-linear viscoelastic behavior, which shows strainhardening with a characteric critical strain amplitude that is only a function of the interlayer distance. These results provide complementary information to that obtained for solution brushes using the SFA, and are attributed to chain stretching associated with the space-filling requirements of a melt brush. [Pg.143]

As previously noted, this chapter has been concerned mainly with those models for the creep of ceramic matrix composite materials which feature some novelty that cannot be represented simply by taking models for the linear elastic properties of a composite and, through transformation, turning the model into a linear viscoelastic one. If this were done, the coverage of models would be much more comprehensive since elastic models for composites abound. Instead, it was decided to concentrate mainly on phenomena which cannot be treated in this manner. However, it was necessary to introduce a few models for materials with linear matrices which could have been developed by the transformation route. Otherwise, the discussion of some novel aspects such as fiber brittle failure or the comparison of non-linear materials with linear ones would have been incomprehensible. To summarize those models which could have been introduced by the transformation route, it can be stated that the inverse of the composite linear elastic modulus can be used to represent a linear steady-state creep coefficient when the kinematics are switched from strain to strain rate in the relevant model. [Pg.329]

We will begin with a brief survey of linear viscoelasticity (section 2.1) we will define the various material functions and the mathematical theory of linear viscoelasticity will give us the mathematical bridges which relate these functions. We will then describe the main features of the linear viscoelastic behaviour of polymer melts and concentrated solutions in a purely rational and phenomenological way (section 2.2) the simple and important conclusions drawn from this analysis will give us the support for the molecular models described below (sections 3 to 6). [Pg.96]

In the various formulations of the mathematical theory of linear viscoelasticity, one should differentiate clearly the measurable and non-measurable fimctions, especially when it comes to modelling apart from the material functions quoted above, one may also define non measurable viscoelastic functions which Eu-e pure mathematical objects, such as the distribution of relaxation times, the distribution of retardation times, and tiie memory function. These mathematical tools may prove to be useful in some situations for example, a discrete distribution of relaxation times is easy to handle numerically when working with constitutive equations of the difierential type, but one has to keep in mind that the relaxation times derived numerically by optimization methods have no direct physical meaning. Furthermore, the use of the distribution of relaxation times is useless and costs precision when one wishes simply to go back and forth from the time domain to the frequency domain. This warning is important, given the large use (and sometimes overuse) of these distribution functions. [Pg.96]

Polymeric fluids are the most studied of all complex fluids. Their rich rheological behavior is deservedly the topic of numerous books and is much too vast a subject to be covered in detail here. We must therefore limit ourselves to an overview. The interested reader can obtain more thorough presentations in the following references a book by Ferry (1980), which concentrates on the linear viscoelasticity of polymeric fluids, a pair of books by Bird et al. (1987a,b), which cover polymer constitutive equations, molecular models, and elementary fluid mechanics, books by Tanner (1985), by Dealy and Wissbrun (1990), and by Baird and Dimitris (1995), which emphasize kinematics and polymer processing flows, a book by Macosko (1994) focusing on measurement methods and a book by Larson (1988) on polymer constitutive equations. Parts of this present chapter are condensed versions of material from Larson (1988). The static properties of flexible polymer molecules are discussed in Section 2.2.3 their chemistry is described in Flory (1953). [Pg.107]

Materials can show linear and nonlinear viscoelastic behavior. If the response of the sample (e.g., shear strain rate) is proportional to the strength of the defined signal (e.g., shear stress), i.e., if the superposition principle applies, then the measurements were undertaken in the linear viscoelastic range. For example, the increase in shear stress by a factor of two will double the shear strain rate. All differential equations (for example, Eq. (13)) are linear. The constants in these equations, such as viscosity or modulus of rigidity, will not change when the experimental parameters are varied. As a consequence, the range in which the experimental variables can be modified is usually quite small. It is important that the experimenter checks that the test variables indeed lie in the linear viscoelastic region. If this is achieved, the quality control of materials on the basis of viscoelastic properties is much more reproducible than the use of simple viscosity measurements. Non-linear viscoelasticity experiments are more difficult to model and hence rarely used compared to linear viscoelasticity models. [Pg.3134]

The viscoelasticity properties are also important, because they can supply information directly related to the form of the macromolecules. The models of the linear viscoelasticity are developed from two elements a spring and a dashpot. Two of those elements in line constitute the Maxwell model and in parallel the Kelvin model (or Vogt).20 Normally, those models don t represent the behavior of complex materials satisfactorily. Other models such as the Burgers model, where the Maxwell and Kelvin models are connected in line, are used to determine the modulus of elasticity (Yj and Y2) and the coefficients of viscosity ( and t]2).21... [Pg.292]

The most commonly used model is the Boltzmann superposition principle, which proposes that for a linear viscoelastic material the entire loading history contributes to the strain response, and the latter is simply given by the algebraic sum of the strains due to each step in the load. The principle may be expressed as follows. If an equation for the strain is obtained as a function of time under a constant stress, then the modulus as a function of time may be expressed as... [Pg.297]

The mechanical properties of the nucleus, the stiffest component of the cell, are important for the overall cellular response. It is, probably, even more significant that forces transmitted from the cell surface and acting on the nucleus can alter gene expression and protein synthesis. Kan et al. (1999a) have modeled the nucleus as a viscous fluid and analyzed the effect of the nucleus on the leukocyte recovery. Guilak et al. [2000] have estimated the linear viscoelastic properties of nuclei of chondrocytes. Caille et al. [2002] used a model of nonlinear elastic material to estimate Young s modulus of endothelial cell nuclei. Recently, Dahl et al. [2004], by using the micropipette technique, have estimated the mechanical properties of the cell s nuclear envelope. [Pg.1050]

First, we need a rule to predict the effect of time-varying loads on a viscoelastic model. When a combination of loads is applied to an elastic material, the stress (and strain) components caused by each load in turn can be added. This addition concept is extended to linear viscoelastic materials. The Boltzmann superposition principle states that if a creep stress ai is... [Pg.208]

The principal limitation of Wright s static displacement model is that it does not consider the accumulation of deformations due to the passage of a number of waves. This problem has been approached by Schapery and Dunlap (1978), modeling the soil as a linearly viscoelastic material. Their analysis also included the effect of energy adsorption of the seafloor on the wave characteristics. [Pg.470]

Several investigators in the field of rheology have suggested that free volume is a good unifying parameter to describe changes in the timescale of material response in polymers. Free volume is the portion of the specific volume of the material that is unoccupied by the molecules. Researchers have applied the concept of free volume to develop a non-linear viscoelastic constitutive relationship [2] as well as for modeling coupled diffusion in viscoelastic materials [1]. [Pg.353]


See other pages where Material modeling linear viscoelasticity is mentioned: [Pg.829]    [Pg.98]    [Pg.711]    [Pg.90]    [Pg.124]    [Pg.113]    [Pg.139]    [Pg.141]    [Pg.147]    [Pg.149]    [Pg.225]    [Pg.30]    [Pg.68]    [Pg.306]    [Pg.196]    [Pg.249]    [Pg.51]    [Pg.140]    [Pg.1048]    [Pg.160]    [Pg.385]   
See also in sourсe #XX -- [ Pg.321 , Pg.322 , Pg.323 ]




SEARCH



Linear viscoelastic materials

Linear viscoelastic models

Linearized model

Materials linear

Model Linearity

Model materials

Models linear model

Models linearization

Viscoelastic Modeling

Viscoelastic materials

Viscoelastic modelling

Viscoelastic models

Viscoelasticity linear viscoelastic model

Viscoelasticity models

© 2024 chempedia.info