Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Material characteristic properties

Carbon-fluorine bonds are quite strong (slightly stronger than C—H bonds) and like polyethylene Teflon is a very stable inert material We are all familiar with the most characteristic property of Teflon its nonstick surface This can be understood by com paring Teflon and polyethylene The high electronegativity of fluorine makes C—P bonds less polarizable than C—H bonds causing the dispersion forces m Teflon to be less than those m polyethylene Thus the surface of Teflon is even less sticky than the already slick surface of polyethylene... [Pg.271]

The properties of fillers which induence a given end use are many. The overall value of a filler is a complex function of intrinsic material characteristics, eg, tme density, melting point, crystal habit, and chemical composition and of process-dependent factors, eg, particle-si2e distribution, surface chemistry, purity, and bulk density. Fillers impart performance or economic value to the compositions of which they are part. These values, often called functional properties, vary according to the nature of the appHcation. A quantification of the functional properties per unit cost in many cases provides a vaUd criterion for filler comparison and selection. The following are summaries of key filler properties and values. [Pg.366]

Sulfur hexafluoride [2551-62-4] 6 molecular weight 146.07, is a colorless, odorless, tasteless gas. It is not flammable and not particularly reactive. Its high chemical stabiUty and excellent electrical characteristics have led to widespread use in various kinds of electrical and electronic equipment such as circuit breakers, capacitors, transformers, microwave components, etc (see Electronic materials). Other properties of the gas have led to limited usage in a variety of unique appHcations ranging from medical appHcations to space research. [Pg.240]

Table 9. Comparison of Characteristic Properties of Substrate Materials... Table 9. Comparison of Characteristic Properties of Substrate Materials...
Two parallel plates of conducting material separated by an insulation material, called the dielectric, constitutes an electrical condenser. The two plates may be electrically charged by connecting them to a source of direct current potential. The amount of electrical energy that can be stored in this manner is called the capacitance of the condenser, and is a function of the voltage, area of the plates, thickness of the dielectric, and the characteristic property of the dielectric material called dielectric constant. [Pg.325]

There are many types of lasers, having a wide variety of methods of constmction and based on many different classes of materials. The properties of some commercially available lasers are summarized in Table 1. Typical available characteristics are given. More detailed compilations of the properties of commercially available lasers are available (20,21). [Pg.5]

Aromatic polyethers are best characterized by their thermal and chemical stabiUties and mechanical properties. The aromatic portion of the polyether contributes to the thermal stabiUty and mechanical properties, and the ether fiinctionahty faciUtates processing but stiU possesses both oxidative and thermal stabiUty. With these characteristic properties as well as the abiUty to be processed as mol ding materials, many of the aromatic polyethers can be classified as engineering thermoplastics (see Engineering PLASTICS). [Pg.326]

The main characteristic properties of asbestos fibers that can be exploited in industrial appHcations (8) are their thermal, electrical, and sound insulation nonflammabiUty matrix reinforcement (cement, plastic, and resins) adsorption capacity (filtration, Hquid sterilization) wear and friction properties (friction materials) and chemical inertia (except in acids). These properties have led to several main classes of industrial products or appHcations... [Pg.354]

The primary constituent of practically ah. asbestos—organic friction materials was asbestos fiber, with smah quantities of other fibrous reinforcement material. Asbestos was chosen because of its thermal stabhity, its relatively high friction, and its reinforcing properties. Because asbestos alone did not offer ah of the desked properties, other materials cahed property modifiers were added to provide desked levels of friction, wear, fade, recovery, noise, and rotor compatibihty. A reski bkider held the other materials together. This bkider is not completely neutral and makes contributions to the friction and wear characteristics of the composite. The more commonly used kigredients can be found ki various patents (6—9). [Pg.272]

One unfortunate characteristic property of polypropylene is the dominating transition point which occurs at about 0°C with the result that the polymer becomes brittle as this temperature is approached. Even at room temperature the impact strength of some grades leaves something to be desired. Products of improved strength and lower brittle points may be obtained by block copolymerisation of propylene with small amounts (4-15%) of ethylene. Such materials are widely used (known variously as polyallomers or just as propylene copolymers) and are often preferred to the homopolymer in injection moulding and bottle blowing applications. [Pg.253]

Whilst the properties of the cross-linked resins depend very greatly on the curing system used and on the type of resin, the most characteristic properties of commercial materials are their toughness, low shrinkage on cure, high adhesion to many substrates, good alkali resistance and versatility in formulation. [Pg.745]

The Standard for Tests for Flammability of Plastic Materials for Parts in Devices and Appliances (UL 94) has methods for determining whether a material will extinguish, or burn and propagate flame. The UL Standard for Polymeric Materials-ShortTerm Property Evaluations is a series of small-scale tests used as a basis for comparing the mechanical, electrical, thermal, and resistance-to-ignition characteristics of materials. [Pg.286]

Material Characteristics Strength and Stiffness Toughness Short-Term Heal Resistance Long-Term Heal Resistance Environ- mental Resistance Dimensional Accuracy in Molding Dimensions Stability Wear and Frictionat Properties Point Subtotal Cost Point Total... [Pg.416]

The basics observed in molded products are always the same only the extent of the features varies depending on the process variables, material properties, and cavity contour. That is the inherent hydrodynamic skin-core structure characteristic of all IM products. However, the ratio of skin thickness to core thickness will vary basically with process conditions and material characteristics, flow rate, and melt-mold temperature difference. These inherent features have given rise to an increase in novel commercial products and applications via coinjection, gas-assisted, low pressure, fusible-core, in-mold decorating, etc. [Pg.468]

Whether they are called surfaces or interfaces, when the zones between parts of a structure are "thin"— from a fraction of a micrometer (the limit of the ordinary microscope) down to molecular dimensions—the matter in them assumes a character that is somewhat different from that seen when the same matter is in bulk form. This special character of a molecular population arranged as an interfacial zone is manifested in such phenomena as surface tension, surface electronic states, surface reactivity, and the ubiquitous phenomena of surface adsorption and segregation. And the stmcturing of multiple interfaces may be so fine that no part of the resulting material has properties characteristic of any bulk material the whole is exclusively made up of transition zones of one kind or another. [Pg.168]

Viscoelasticity illustrates materials that exhibit both viscous and elastic characteristics. Viscous materials tike honey resist shear flow and strain linearly with time when a stress is applied. Elastic materials strain instantaneously when stretched and just as quickly return to their original state once the stress is removed. Viscoelastic materials have elements of both of these properties and, as such, exhibit time-dependent strain. Viscoelasticity is the result of the diffusion of atoms or molecules inside an amorphous material. Rubber is highly elastic, but yet a viscous material. This property can be defined by the term viscoelasticity. Viscoelasticity is a combination of two separate mechanisms occurring at the same time in mbber. A spring represents the elastic portion, and a dashpot represents the viscous component (Figure 28.7). [Pg.783]

Since both the manufacturer and his suppliers are forced to work by the same strategy, each company s raw materials QC and finished product QC laboratories test only for the most obvious characteristics. An undetected change in a raw material s properties might change a product characteristic that could also go unnoticed until much later. [Pg.295]

For the characterization of Langmuir films, Fulda and coworkers [75-77] used anionic and cationic core-shell particles prepared by emulsifier-free emulsion polymerization. These particles have several advantages over those used in early publications First, the particles do not contain any stabihzer or emulsifier, which is eventually desorbed upon spreading and disturbs the formation of a particle monolayer at the air-water interface. Second, the preparation is a one-step process leading directly to monodisperse particles 0.2-0.5 jim in diameter. Third, the nature of the shell can be easily varied by using different hydrophilic comonomers. In Table 1, the particles and their characteristic properties are hsted. Most of the studies were carried out using anionic particles with polystyrene as core material and polyacrylic acid in the shell. [Pg.218]


See other pages where Material characteristic properties is mentioned: [Pg.6]    [Pg.6]    [Pg.87]    [Pg.267]    [Pg.289]    [Pg.257]    [Pg.355]    [Pg.342]    [Pg.154]    [Pg.233]    [Pg.554]    [Pg.1238]    [Pg.295]    [Pg.271]    [Pg.21]    [Pg.179]    [Pg.299]    [Pg.519]    [Pg.299]    [Pg.20]    [Pg.455]    [Pg.34]    [Pg.164]    [Pg.89]    [Pg.688]    [Pg.47]    [Pg.55]    [Pg.60]    [Pg.542]    [Pg.3]   


SEARCH



Characteristic properties

Characteristics material

© 2024 chempedia.info