Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Manganese complexes sulfates

Manganese (II) sulfate Brown precipitate of hydrate complex in neutral or alkaline test solution... [Pg.533]

Manganese(II) can be titrated directly to Mn(III) using hexacyanoferrate(III) as the oxidant. Alternatively, Mn(III), prepared by oxidation of the Mn(II)-EDTA complex with lead dioxide, can be determined by titration with standard iron(II) sulfate. [Pg.1168]

The typical SEA process uses a manganese catalyst with a potassium promoter (for solubilization) in a batch reactor. A manganese catalyst increases the relative rate of attack on carbonyl intermediates. Low conversions are followed by recovery and recycle of complex intermediate streams. Acid recovery and purification involve extraction with caustic and heat treatment to further decrease small amounts of impurities (particularly carbonyls). The fatty acids are recovered by freeing with sulfuric acid and, hence, sodium sulfate is a by-product. [Pg.344]

Precipitation is often applied to the removal of most metals from wastewater including zinc, cadmium, chromium, copper, fluoride, lead, manganese, and mercury. Also, certain anionic species can be removed by precipitation, such as phosphate, sulfate, and fluoride. Note that in some cases, organic compounds may form organometallic complexes with metals, which could inhibit precipitation. Cyanide and other ions in the wastewater may also complex with metals, making treatment by precipitation less efficient. A cutaway view of a rapid sand filter that is most often used in a municipal treatment plant is illustrated in Figure 4. The design features of this filter have been relied upon for more than 60 years in municipal applications. [Pg.246]

Thus, the mechanism of MT antioxidant activity might be connected with the possible antioxidant effect of zinc. Zinc is a nontransition metal and therefore, its participation in redox processes is not really expected. The simplest mechanism of zinc antioxidant activity is the competition with transition metal ions capable of initiating free radical-mediated processes. For example, it has recently been shown [342] that zinc inhibited copper- and iron-initiated liposomal peroxidation but had no effect on peroxidative processes initiated by free radicals and peroxynitrite. These findings contradict the earlier results obtained by Coassin et al. [343] who found no inhibitory effects of zinc on microsomal lipid peroxidation in contrast to the inhibitory effects of manganese and cobalt. Yeomans et al. [344] showed that the zinc-histidine complex is able to inhibit copper-induced LDL oxidation, but the antioxidant effect of this complex obviously depended on histidine and not zinc because zinc sulfate was ineffective. We proposed another mode of possible antioxidant effect of zinc [345], It has been found that Zn and Mg aspartates inhibited oxygen radical production by xanthine oxidase, NADPH oxidase, and human blood leukocytes. The antioxidant effect of these salts supposedly was a consequence of the acceleration of spontaneous superoxide dismutation due to increasing medium acidity. [Pg.891]

Subsequent reaction of porphyrazines 170 and 171 with Cu(OAc)2 resulted in the selective metalation within the macrocyclic cavity to provide the corresponding copper complexes 166 (62%) and 172 (47%). Treatment of pz 170 with manganese acetate and iron sulfate in dimethyl sulfate gave the dmso adducts 173 (70%) and 174 (85%), respectively (168). Axial ligation was also observed when other metals were incorporated such as cobalt acetate, nickel acetate, and zinc acetate to give the metal complexes 175 (83%), 176 (70%), and 177 (90%) as the hydrates. The axial ligand of... [Pg.563]

Little is known concerning the chemistry of nickel in the atmosphere. The probable species present in the atmosphere include soil minerals, nickel oxide, and nickel sulfate (Schmidt and Andren 1980). In aerobic waters at environmental pHs, the predominant form of nickel is the hexahydrate Ni(H20)g ion (Richter and Theis 1980). Complexes with naturally occurring anions, such as OH, SO/, and Cf, are formed to a small degree. Complexes with hydroxyl radicals are more stable than those with sulfate, which in turn are more stable than those with chloride. Ni(OH)2° becomes the dominant species above pH 9.5. In anaerobic systems, nickel sulfide forms if sulfur is present, and this limits the solubility of nickel. In soil, the most important sinks for nickel, other than soil minerals, are amorphous oxides of iron and manganese. The mobility of nickel in soil is site specific pH is the primary factor affecting leachability. Mobility increases at low pH. At one well-studied site, the sulfate concentration and the... [Pg.177]

Literally hundreds of complex equilibria like this can be combined to model what happens to metals in aqueous systems. Numerous speciation models exist for this application that include all of the necessary equilibrium constants. Several of these models include surface complexation reactions that take place at the particle-water interface. Unlike the partitioning of hydrophobic organic contaminants into organic carbon, metals actually form ionic and covalent bonds with surface ligands such as sulfhydryl groups on metal sulfides and oxide groups on the hydrous oxides of manganese and iron. Metals also can be biotransformed to more toxic species (e.g., conversion of elemental mercury to methyl-mercury by anaerobic bacteria), less toxic species (oxidation of tributyl tin to elemental tin), or temporarily immobilized (e.g., via microbial reduction of sulfate to sulfide, which then precipitates as an insoluble metal sulfide mineral). [Pg.493]


See other pages where Manganese complexes sulfates is mentioned: [Pg.1034]    [Pg.423]    [Pg.32]    [Pg.480]    [Pg.412]    [Pg.286]    [Pg.175]    [Pg.378]    [Pg.1057]    [Pg.161]    [Pg.471]    [Pg.173]    [Pg.457]    [Pg.58]    [Pg.575]    [Pg.224]    [Pg.39]    [Pg.29]    [Pg.186]    [Pg.457]    [Pg.399]    [Pg.832]    [Pg.124]    [Pg.102]    [Pg.2244]    [Pg.173]    [Pg.61]    [Pg.29]    [Pg.369]    [Pg.2511]    [Pg.2512]    [Pg.9]    [Pg.118]    [Pg.208]    [Pg.210]    [Pg.3766]    [Pg.4615]    [Pg.4734]    [Pg.4766]    [Pg.4821]    [Pg.5119]   
See also in sourсe #XX -- [ Pg.87 , Pg.105 ]

See also in sourсe #XX -- [ Pg.4 , Pg.87 , Pg.105 ]




SEARCH



Manganese complexes

Manganese complexing

Sulfate complexes

© 2024 chempedia.info