Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Major elements modelling

The majority of polymer flow processes are characterized as low Reynolds number Stokes (i.e. creeping) flow regimes. Therefore in the formulation of finite element models for polymeric flow systems the inertia terms in the equation of motion are usually neglected. In addition, highly viscous polymer flow systems are, in general, dominated by stress and pressure variations and in comparison the body forces acting upon them are small and can be safely ignored. [Pg.111]

The majority of polymer flow processes involve significant heat dissipation and should be regarded as nou-isothermal regimes. Therefore in the finite element modelling of polymeric flow, in conjunction with the equations of continuity... [Pg.128]

Table 3 describes the main parts of an environmental risk assessment (ERA) that are based on the two major elements characterisation of exposure and characterisation of effects [27, 51]. ERA uses a combination of exposure and effects data as a basis for assessing the likelihood and severity of adverse effects (risks) and feeds this into the decision-making process for managing risks. The process of assessing risk ranges from the simple calculation of hazard ratios to complex utilisation of probabilistic methods based on models and/or measured data sets. Setting of thresholds such as EQS and quality norms (QN) [27] relies primarily on... [Pg.406]

For a first chemical model, we calculate the distribution of species in surface seawater, a problem first undertaken by Garrels and Thompson (1962 see also Thompson, 1992). We base our calculation on the major element composition of seawater (Table 6.2), as determined by chemical analysis. To set pH, we assume equilibrium with CO2 in the atmosphere (Table 6.3). Since the program will determine the HCOJ and water activities, setting the CO2 fugacity (about equal to partial pressure) fixes pH according to the reaction,... [Pg.82]

Ball, J. W, E. A. Jenne and D. K. Nordstrom, 1979, WATEQ2 - a computerized chemical model for trace and major element speciation and mineral equilibria of natural waters. In E. A. Jenne (ed.), Chemical Modeling in Aqueous Systems, American Chemical Society, Washington DC, pp. 815-835. [Pg.510]

Year Three Complete analysis of trace elements by ICP-MS at Lawrence University analysis of major elements by XRF at Macalester College (up to 100 samples) determination of Sr, Nd, and Pb isotopic ratios of a selection of Wolf and Darwin samples by TIMS at Cornell (up to 30 samples). Interpretation of geochemical data, modeling of melting parameters. Presentation of results at Fall AGU meeting by undergraduate student(s). Preparation for fieldwork. [Pg.481]

The main areas of application for more generalised models have, until recently, been restricted to binary and ternary systems or limited to ideal industrial materials where only major elements were included. The key to general application of CALPHAD methods in multi-component systems is the development of sound, validated thermodynamic databases which can be accessed by the computing software and, until recently, there has been a dearth of such databases. [Pg.326]

The major elements of the quality system model described in the FDA s pharmaceutical QS guidance document are consistent with existing quality system standards. These elements are as follows ... [Pg.208]

There is significant commonality between the requirements contained in current quality system models such as ISO 9001-2000 and the cGMP regulation requirements for manufacturing operations. The FDA has identified four major elements of a QS approach to manufacturing operations. These are identified and compared to the cGMP requirements in Table 3. [Pg.211]

Since the work of Baxter et al. [75,76] around 1990, we have not found many more recent applications and it was not until 2003 that Felipe-Sotelo et al. [77] presented another application. They considered a problem where a major element (Fe) caused spectral and chemical interferences on a minor element (Cr), which had to be quantified in natural waters. They demonstrated that linear PLS handled (eventual) nonlinearities since polynomial PLS and locally weighted regression (nonlinear models) did not outperform its results. Further, it was found that linear PLS was able to model three typical effects which currently occur in ETAAS peak shift, peak enhancement (depletion) and random noise. [Pg.233]

And the answer is yes if we emphasize the way the new findings enable us to revise Freud s necessarily speculative dream theory and replace it with one that gives a detailed alternative account of dream phenomenology and eliminates the very dubious disguise-censorship idea, but still retains the crucial concept of emotional salience as a major element in dream content elaboration. The model does not now specify regional shifts in neuronal activity and/or blood flow, but if both derive from the neuromodulatory ratio shift, then factor M would predict the enhancement of emotion in dreaming and its central role in shaping dream plots. [Pg.130]

Analysis of major elements (except Si) and total phosphorus on bomb-digested samples was accomplished by inductively coupled plasma emission spectrometry (ICP, ARL model 34,000). Silicon was analyzed colorimetrically (14). Phosphorus in total digests was also determined colorimetrically by the method of Murphy and Riley (15), as modified by Erickson (16). To avoid interference from fluoride ion used in the digestion technique, sample volumes were restricted to <1.5 mL in the standard P analytical protocol. [Pg.290]

Global specialty chemicals companies already operate plants in many different countries and have the expertise to navigate in the respective business environments. Therefore, typically political risks are not incorporated into quantitative models but considered when selecting the potential investment candidate countries. If desired, the model can be extended to include political risk based on an aggregate risk parameter to analyze risk/return profiles for alternative network configurations. For a more detailed discussion of the major elements of political risk see Appendix 3. [Pg.88]

The model optimized based on steady-state analysis allows for a dynamic real-time simulation of the entire absorption process. Because dynamic behavior is determined mainly by process hydraulics, it is necessary to consider those elements of the column periphery that lead to larger time constants than the column itself. Therefore, major elements of the column periphery, such as distributors, stirred tanks, and pipelines, have been additionally implemented into the dynamic model. [Pg.348]

Models for the formation of Precambrian sediments suggest that the chemical sediments (such as cherts) of the Isua supracrustal belt have formed as shallow water deposits. This is in agreement with structures locally preserved in the metacherts of the sequence. After deposition, the supracrustals were folded and metamorphosed. Finally, the metamorphism reached lower amphibolite facies and in consequence, most of the primary minerals became recrystallized. As a result all chert now appears as quartzite. But apparently metacherts, magnetite iron formation and quartz carbonate rocks have retained their major element chemistry largely unaltered during metamorphism (Nutman et al., 1984) 119). [Pg.44]

In much the same way as Scenario (2.3), it is necessary to write similar relationships for all known types of plant formations and, using a global model, to evaluate the consequences of substitution of one type of vegetation cover for another (see Section 3.6.2 for details). But, of course, most important for studies is the process of substitution of forests for agricultural lands. At the present time, of the 148,000,000 km2 (57 million mi2) of land approximately 31,000,000 km2 (12 million mi2) are arable, and they expand at a rate of 100,000km2 (38,610mi2) per year. A major element of arable land loss is deforestation which continues to the present day, primarily in tropical countries through commercial over-exploitation of tropical forest. [Pg.112]

Overall, these models are closer to the empirical PD models, but major elements of the biological system are implemented. Semi-mechanistic models are mostly developed using the population approach and consequently they are data-driven and parameters are estimated from the data available. Parameters which cannot be estimated might be either fixed to biologically meaningful values or they are explored by other studies, including in vitro or preclinical in vivo studies. Overall, the number of parameters is still small, compared with mechanistic PD models and the majority of the parameters are estimated. [Pg.473]

Model the oxidation of pyrite with different oxygen supphes (0.0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.3, 0.6, 1.0 mol), and show the changes graphically for the two major elements building up from pyrite dissolution as well as for the pH value of the ground water given in Table 30. [Pg.115]

WATEQ2—A Computerized Chemical Model for Trace and Major Element Speciation and Mineral Equilibria of Natural Waters... [Pg.815]


See other pages where Major elements modelling is mentioned: [Pg.80]    [Pg.81]    [Pg.80]    [Pg.81]    [Pg.183]    [Pg.262]    [Pg.279]    [Pg.36]    [Pg.193]    [Pg.194]    [Pg.283]    [Pg.330]    [Pg.347]    [Pg.518]    [Pg.722]    [Pg.325]    [Pg.403]    [Pg.405]    [Pg.408]    [Pg.132]    [Pg.1133]    [Pg.1133]    [Pg.51]    [Pg.235]    [Pg.128]    [Pg.68]    [Pg.103]    [Pg.232]   
See also in sourсe #XX -- [ Pg.82 ]




SEARCH



Element Model

Elements major

© 2024 chempedia.info