Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lurgi catalysts

The chemical complex includes the methanol plant, methyl acetate plant, and acetic anhydride plant. The methanol plant uses the Lurgi process for hydrogenation of CO over a copper-based catalyst. The plant is capable of producing 165,000 t/yr of methanol. The methyl acetate plant converts this methanol, purchased methanol, and recovered acetic acid from other Eastman processes into approximately 440,000 t/yr of methyl acetate. [Pg.167]

Sasol Fischer-Tropsch Process. 1-Propanol is one of the products from Sasol s Fischer-Tropsch process (7). Coal (qv) is gasified ia Lurgi reactors to produce synthesis gas (H2/CO). After separation from gas Hquids and purification, the synthesis gas is fed iato the Sasol Synthol plant where it is entrained with a powdered iron-based catalyst within the fluid-bed reactors. The exothermic Fischer-Tropsch reaction produces a mixture of hydrocarbons (qv) and oxygenates. The condensation products from the process consist of hydrocarbon Hquids and an aqueous stream that contains a mixture of ketones (qv) and alcohols. The ketones and alcohols are recovered and most of the alcohols are used for the blending of high octane gasoline. Some of the alcohol streams are further purified by distillation to yield pure 1-propanol and ethanol ia a multiunit plant, which has a total capacity of 25,000-30,000 t/yr (see Coal conversion processes, gasification). [Pg.119]

Continuous slurry reactors are generally either of one of two designs. One type uses a reactor loop, generally known as a Buss loop design the other is a co-current hydrogen/fatty acid/catalyst system mainly marketed by Lurgi. Continuous slurry reactors are more popular in Europe, Asia, and South America than in the United States. [Pg.91]

Sasol uses both fixed-bed reactors and transported fluidized-bed reactors to convert synthesis gas to hydrocarbons. The multitubular, water-cooled fixed-bed reactors were designed by Lurgi and Ruhrchemie, whereas the newer fluidized-bed reactors scaled up from a pilot unit by Kellogg are now known as Sasol Synthol reactors. The two reactor types use different iron-based catalysts and give different product distributions. [Pg.199]

Fig. 13. Flowsheet of medium pressure synthesis, fixed-bed reactor (Lurgi-Ruhrchemie-Sasol) having process conditions for SASOL I of an alkaline, precipitated-iron catalyst, reduction degree 20—25% having a catalyst charge of 32—36 t, at 220—255°C and 2.48 MPa (360 psig) at a fresh feed rate of... Fig. 13. Flowsheet of medium pressure synthesis, fixed-bed reactor (Lurgi-Ruhrchemie-Sasol) having process conditions for SASOL I of an alkaline, precipitated-iron catalyst, reduction degree 20—25% having a catalyst charge of 32—36 t, at 220—255°C and 2.48 MPa (360 psig) at a fresh feed rate of...
In Lurgi coal gasification, an example of extremely important treating is in the sulfur removal step ahead of methanation where the catalyst is poisoned by even small traces of any sulfur compound. The sulfur removal step is a relatively high capital and operating cost item. [Pg.216]

The chapter by Eisenlohr et al. deals with the results of large scale pilot operations using a newly developed high-nickel catalyst with hot-gas recycle for temperature control. This and other work, conducted by Lurgi Mineraloeltechnik GmbH, with South African Coal and Oil Limited (SASOL), are the bases of the methanation process which Lurgi is proposing for commercial plants. [Pg.8]

The findings from two long term test runs in the SASOL plant relevant to catalyst life under design conditions in a commercial methane synthesis plant have already been published (3). This paper reports further test results from both demonstration units concerning the effect of certain reaction parameters which are the basis for flexibility and operability of the Lurgi methanation scheme. [Pg.123]

These tests demonstrated that the Lurgi Rectisol process provides an extremely pure synthesis gas which can be charged directly to the metha-nation plant without problems of sulfur poisoning of the nickel catalyst. However, in order to cope with a sudden sulfur breakthrough from Rectisol as a result of maloperation, a commercial methanation plant should be operated with a ZnO emergency catchpot on line. [Pg.129]

Mainly C,0-C14 alcohols are needed for the production of surfactants. Therefore the gas phase process, which gives products of high quality, is the most employed technique. Increasingly the hydrogenation of the free acids according to the Lurgi process with suspended catalyst is carried out. [Pg.21]

Benzoraffln A hydrofining process for treating naphtha fractions derived from coal. It is a fixed-bed, gas-phase process using a cobalt/molybdenum oxide catalyst. Developed jointly by BASF, Veba-Chemie, and Lurgi, Ground 1960. [Pg.36]

InTox A process for destroying toxic wastes in aqueous solution by oxidation with oxygen at high temperatures and pressures in a pipe reactor. No catalyst is required. The reactions take place at approximately 300°C and 120 atm. Developed by InTox Corporation, UK, based on a process for extracting aluminum from bauxite developed by Lurgi in the 1960s. See also Zimpro. [Pg.145]

LURGI and Siid-Chemie AG are developing a solid acid-catalyzed alkylation process termed LURGI EUROFUEL . The reactor is derived from tray distillation towers. Isobutane and suspended catalyst enter at the top of the... [Pg.308]


See other pages where Lurgi catalysts is mentioned: [Pg.130]    [Pg.130]    [Pg.238]    [Pg.446]    [Pg.164]    [Pg.165]    [Pg.165]    [Pg.81]    [Pg.160]    [Pg.275]    [Pg.292]    [Pg.2093]    [Pg.122]    [Pg.20]    [Pg.31]    [Pg.195]    [Pg.25]    [Pg.84]    [Pg.194]    [Pg.260]    [Pg.296]    [Pg.489]    [Pg.383]    [Pg.511]    [Pg.522]    [Pg.18]    [Pg.77]    [Pg.187]    [Pg.253]    [Pg.50]    [Pg.114]    [Pg.81]    [Pg.580]    [Pg.637]    [Pg.279]    [Pg.161]   
See also in sourсe #XX -- [ Pg.123 , Pg.124 , Pg.125 , Pg.126 , Pg.127 , Pg.128 , Pg.129 ]




SEARCH



Lurgi

© 2024 chempedia.info