Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lubricating oil aromatics

Solvent dewaxing removes wax from lubricating oil stocks, promoting crystallization of the wax. Solvents include furfural, phenol, cresylic acid-propane (DuoSol), liquid sulfur dioxide (Eleleanu process), B,B-dichloroethyl ether, methyl ethyl ketone, nitrobenzene, and sulfur-benzene. The process yields de-oiled waxes, wax-free lubricating oils, aromatics, and recovered solvents. [Pg.249]

Plastic solid of milky transperency. d 0.92. Tough and flexible at room temps, mp 85-1KT. Breaks with cryst fracture at — 50°. Oood electrical insulator. Surface resistivity 10H ohms. Will burn, but hardly supports combustion. Stable to water, non-oxidizing acids and alkalies, alcohols, ethers, ketones, esters at ordinary temps. Attacked by oxidizing acids such as nitric acid and perchloric acid, free halogens, bsnzene, petr ether, gasoline and lubricating oils, aromatic and chlorinated hydrocarbons. [Pg.1204]

Microcrystalline waxes, produced from heavy lubricating oil residues, have a micro-crystalline structure and consist largely of iso-and cycloalkanes with some aromatics. [Pg.302]

Burdett, R.A., L.W. Taylor and L.C. Jones Jr (1955), Determination of aromatic hydrocarbons in lubricating oil fractions by far UV absorption spectroscopy , p. 30. In Molecular Spectroscopy Report Conf. Institute of Petroleum, London. [Pg.454]

Petroleum and Petrochemical Processes. The first large-scale appHcation of extraction was the removal of aromatics from kerosene [8008-20-6J to improve its burning properties. Jet fuel kerosene and lubricating oil, which requite alow aromatics content (see Aviation and OTHER gas... [Pg.77]

Lubricating Oil Extraction. Aromatics are removed from lubricating oils to improve viscosity and chemical stabihty (see Lubrication and lubricants). The solvents used are furfural, phenol, and Hquid sulfur dioxide. The latter two solvents are undesirable owing to concerns over toxicity and the environment and most newer plants are adopting furfural processes (see Furan derivatives). A useful comparison of the various processes is available (219). [Pg.78]

As is indicated in Figure 4, saturates contribute less to the vacuum gas oil (VGO) than the aromatics, but more than the polars present at percentage, rather than trace, levels. VGO itself is occasionally used as a heating oil but most commonly it is processed by catalytic cracking to produce naphtha or by extraction to yield lubricant oils. [Pg.170]

Lube oil extraction plants often use phenol as solvent. Phenol is used because of its solvent power with a wide range of feed stocks and its ease of recovery. Phenol preferentially dissolves aromatic-type hydrocarbons from the feed stock and improves its oxidation stability and to some extent its color. Phenol extraction can be used over the entire viscosity range of lube distillates and deasphalted oils. The phenol solvent extraction separation is primarily by molecular type or composition. In order to accomplish a separation by solvent extraction, it is necessary that two liquid phases be present. In phenol solvent extraction of lubricating oils these two phases are an oil-rich phase and a phenol-rich phase. Tne oil-rich phase or raffinate solution consists of the "treated" oil from which undesirable naphthenic and aromatic components have been removed plus some dissolved phenol. The phenol-rich phase or extract solution consists mainly of the bulk of the phenol plus the undesirable components removed from the oil feed. The oil materials remaining... [Pg.231]

Solvent extraction removes harmful constituents such as heavy aromatic compounds from lubricating oils to improve the viscosity-temperature relationship. The usual solvents for extracting lubricating oil are phenol and furfural. [Pg.288]

MLDW [Mobil lube dewaxing] A catalytic process for removing waxes (long-chain linear aliphatic hydrocarbons and alkyl aromatic hydrocarbons) from lubricating oil. Developed by Mobil Research Development Corporation and operated at Mobil Oil refineries since 1981. Eight units were operating in 1991. [Pg.178]

Important applications of liquid-liquid extraction include the separation of aromatics from kerosene-based fuel oils to improve their burning qualities and the separation of aromatics from paraffin and naphthenic compounds to improve the temperature-viscosity characteristics of lubricating oils. It may also be used to obtain, for example, relatively... [Pg.721]

Deposits can form within the combustion chamber of a gasoline engine. These deposits are complex in nature and can contain components from fuel combustion, from the lubricating oil, and from some additives. Typically, the heavier fuel and lubricant components such as condensed aromatics and bright stocks contribute most significantly to combustion chamber deposits. [Pg.47]

Deposits on intake valves are also caused primarily by olefins, especially diolefins, and higher-molecular-weight aromatic fuel components. The higher temperatures within the intake valve region promote the formation of deposits which are more carbonaceous than those which form on fuel injector tips. Also, components of the lubricating oil additive package are often found within the matrix of intake valve deposits. [Pg.162]

The incorporation of polar groups in unvulcanized polymers reduces their solubility in benzene. Thus the copolymer of acrylonitrile and butadiene (NBR), polychlorobutadiene (Neoprene), and fluorinated EP (the copolymer of ethylene and propylene) are less soluble in benzene and lubricating oils than the previously cited elastomers. Likewise, silicones and phosphazene elastomers, as well as elastomeric polyfluorocarbons, are insoluble in many oils and aromatic hydrocarbons because of their extremely low solubility parameters (silicons 7-8 H polytetrafluoroethylene 6.2 benzene 9.2 toluene 8.9 pine oil P.6). [Pg.208]


See other pages where Lubricating oil aromatics is mentioned: [Pg.284]    [Pg.303]    [Pg.284]    [Pg.284]    [Pg.284]    [Pg.284]    [Pg.284]    [Pg.303]    [Pg.284]    [Pg.284]    [Pg.284]    [Pg.284]    [Pg.257]    [Pg.277]    [Pg.264]    [Pg.364]    [Pg.237]    [Pg.256]    [Pg.354]    [Pg.164]    [Pg.233]    [Pg.201]    [Pg.228]    [Pg.300]    [Pg.321]    [Pg.1038]    [Pg.201]    [Pg.316]    [Pg.96]    [Pg.15]    [Pg.109]    [Pg.261]    [Pg.264]    [Pg.430]    [Pg.328]    [Pg.83]    [Pg.187]    [Pg.89]    [Pg.34]    [Pg.162]    [Pg.2]    [Pg.404]   
See also in sourсe #XX -- [ Pg.279 ]




SEARCH



Lubricating oils

Oil aromatization

© 2024 chempedia.info