Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lower Transition Elements

Fewer complexes of these elements have been studied, and hence most of the results concern halides, oxides, and carbonyls. More problems of involatility are also evident, and high-temperature gas-inlet systems are extensively used. Total failure of the Born approximation also occurs with many of the compounds, and the use of complex scattering factors is essential. All in all, many difficulties must be overcome to obtain worthwhile results. Halides, particularly fluorides, have received considerable attention [Pg.149]

There are several examples in the results recorded above which demonstrate that comparable bond lengths decrease much more rapidly across the actinide series than across the series of /-filling elements of Periods V and VI. A further conclusion is that there is little difference between the lengths of similar bonds to Period V and VI elements of the same group it is the [Pg.151]


Vanadium, a typical transition element, displays weU-cliaractetized valence states of 2—5 in solid compounds and in solutions. Valence states of —1 and 0 may occur in solid compounds, eg, the carbonyl and certain complexes. In oxidation state 5, vanadium is diamagnetic and forms colorless, pale yeUow, or red compounds. In lower oxidation states, the presence of one or more 3d electrons, usually unpaired, results in paramagnetic and colored compounds. All compounds of vanadium having unpaired electrons are colored, but because the absorption spectra may be complex, a specific color does not necessarily correspond to a particular oxidation state. As an illustration, vanadium(IV) oxy salts are generally blue, whereas vanadium(IV) chloride is deep red. Differences over the valence range of 2—5 are shown in Table 2. The stmcture of vanadium compounds has been discussed (6,7). [Pg.390]

Metals and alloys, the principal industrial metalhc catalysts, are found in periodic group TII, which are transition elements with almost-completed 3d, 4d, and 5d electronic orbits. According to theory, electrons from adsorbed molecules can fill the vacancies in the incomplete shells and thus make a chemical bond. What happens subsequently depends on the operating conditions. Platinum, palladium, and nickel form both hydrides and oxides they are effective in hydrogenation (vegetable oils) and oxidation (ammonia or sulfur dioxide). Alloys do not always have catalytic properties intermediate between those of the component metals, since the surface condition may be different from the bulk and catalysis is a function of the surface condition. Addition of some rhenium to Pt/AlgO permits the use of lower temperatures and slows the deactivation rate. The mechanism of catalysis by alloys is still controversial in many instances. [Pg.2094]

Cu ( j -C5H5)2] is not. Likewise, Fe and Ni carborane derivatives are extremely stable. Conversely, metallocarboranes tend to stabilize lower oxidation states of early transition elements and complexes are well established for Ti", Zr , Hf , V , Cr and Mn" these do not react with H2, N2, CO or PPh3 as do cyclopentadienyl derivatives of these elements. [Pg.195]

The predominantly ionic alkali metal sulfides M2S (Li, Na, K, Rb, Cs) adopt the antifluorite structure (p. 118) in which each S atom is surrounded by a cube of 8 M and each M by a tetrahedron of S. The alkaline earth sulfides MS (Mg, Ca, Sr, Ba) adopt the NaCl-type 6 6 structure (p. 242) as do many other monosulfides of rather less basic metals (M = Pb, Mn, La, Ce, Pr, Nd, Sm, Eu, Tb, Ho, Th, U, Pu). However, many metals in the later transition element groups show substantial trends to increasing covalency leading either to lower coordination numbers or to layer-lattice structures. Thus MS (Be, Zn, Cd, Hg) adopt the 4 4 zinc blende structure (p. 1210) and ZnS, CdS and MnS also crystallize in the 4 4 wurtzite modification (p. 1210). In both of these structures both M and S are tetrahedrally coordinated, whereas PtS, which also has 4 4... [Pg.679]

All d" configurations with T ground terms give rise to magnetic moments which are lower for second- and third-row than for first-row transition elements and are temperature dependent, but in no case so dramatically as for low-spin d". ... [Pg.1087]

Selective extraction experiments were then performed to see transference of some transition elements (Cu ", Ni ", Co ", and Fe " ) from the aqueous phase to the organic phase by the synthesized polymeric calixarenes. Phase-transfer studies in water-chloroform confirmed that polymer 2b and 3b were Fe ion-selective as was its monomer (1). Extraction of Fe " cation with 2b and 3b was observed to be maximum at pH 5.4. Only trace amounts of other metal cations such as Cu, Ni ", and Co " were transferred from the aqueous to the organic phase (Table 3). Furthermore, the extracted quantities of these cations remained unaffected with increasing pH. The effect of pH on the extraction of 3b was lower and 56% extraction was accomplished even at pH 2.2. The extraction experiments were also performed with calix[4]arene (1) the ratio was 8.4% at pH 2.2. The polymeric calix[4]arenes were selective to extract Fe " from an aqueous solution, which contained Cu +, Ni, Co ", and Fe " cations, and it was observed that the... [Pg.345]

Only covalent bonds between Li and Na and transition metals are known, there being none with the lower group-IA metals or with inner transition elements. Bonding is inferred from metal-metal distances as well as calculations. ... [Pg.464]

In the oxygen-deficient region, the predominant ionic defect is the oxygen vacancy, V". The charge neutrality in the solid is maintained by reduction of transition element in B-site to the lower valence state. This can be represented as [13] ... [Pg.135]

Figure Al.l Approximate energy level diagram for electronic orbitals in a multi-electron atom. Each horizontal line can accommodate two electrons (paired as so-called spin-up and spin-down electrons), giving the rules for filling the orbitals - two in the s-levels, 6 in the p-levels, 10 in the d-levels. Note that the 3d-orbital energy is lower than the 4p, giving rise to the d-block or transition elements. (From Brady, 1990 Figure 7.10. Copyright 1990 John Wiley Sons, Inc. Reprinted by permission of the publisher.)... Figure Al.l Approximate energy level diagram for electronic orbitals in a multi-electron atom. Each horizontal line can accommodate two electrons (paired as so-called spin-up and spin-down electrons), giving the rules for filling the orbitals - two in the s-levels, 6 in the p-levels, 10 in the d-levels. Note that the 3d-orbital energy is lower than the 4p, giving rise to the d-block or transition elements. (From Brady, 1990 Figure 7.10. Copyright 1990 John Wiley Sons, Inc. Reprinted by permission of the publisher.)...
The reliable experimental information on the absolute scale and thermal vibrations of beryllium metal made it possible to analyze the effect of the model on the least-squares scale factor, and test for a possible expansion of the 1 s core electron shell. The 0.03 A y-ray structure factors were found to be 0.7% lower than the LH data, when the scale factor from a high-order refinement (sin 6/X) > 0.65 A l) is applied. Larsen and Hansen (1984) conclude that because of the delocalization of the valence electrons, it is doubtful that diffraction data from a metallic substance can be determined reliably by high-order refinement, even with very high sin 0/X cut-off values. This conclusion, while valid for the lighter main-group metals, may not fully apply to metals of the transition elements, which have much heavier cores and show more directional bonding. [Pg.259]

Cations differ from ligands in that they influence the crystallization of ferrihydrite over a wider pH range than do ligands. They usually require mol ratios (M/(M + Fe)) of 0.05-0.1 to influence the kinetics and products of the reaction, whereas ligands are often effective at hundredfold lower concentrations. In addition, cations are often incorporated in the iron oxide structure (see Chap. 3). The effects of Ti, VO , Pb ", Cr , and the first row divalent transition elements have been investigated. These effects vary widely, although retardation predominates. [Pg.398]

The remaining exceptions concern the lanthanide series, where samarium at room temperature has a particular hexagonal structure and especially the lower actinides uranium, neptunium, and plutonium. Here the departure from simple symmetry is particularly pronounced. Comparing these three elements with other metals having partly filled inner shells (transition elements and lanthanides), U, Pu, Np have the lowest symmetry at room temperature, normal pressure. This particular crystallographic character is the reason why Pearson did not succeed to fit the alpha forms of U, Pu, and Np, as well as gamma-Pu into his comprehensive classification of metallic structures and treated them as idiosyncratic structures . Recent theoretical considerations reveal that the appearance of low symmetries in the actinide series is intimately linked to the behaviour of the 5f electrons. [Pg.79]


See other pages where Lower Transition Elements is mentioned: [Pg.149]    [Pg.149]    [Pg.409]    [Pg.13]    [Pg.417]    [Pg.347]    [Pg.452]    [Pg.1087]    [Pg.13]    [Pg.390]    [Pg.380]    [Pg.382]    [Pg.19]    [Pg.345]    [Pg.52]    [Pg.4]    [Pg.160]    [Pg.262]    [Pg.30]    [Pg.331]    [Pg.234]    [Pg.98]    [Pg.212]    [Pg.160]    [Pg.45]    [Pg.144]    [Pg.162]    [Pg.164]    [Pg.219]    [Pg.381]    [Pg.13]    [Pg.417]    [Pg.267]    [Pg.605]    [Pg.12]    [Pg.371]    [Pg.126]    [Pg.77]   


SEARCH



Transition elements

Transitional elements

© 2024 chempedia.info