Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Low conductance

Structure defects decrease conductivity of the studied material, and then the intensity of the induced magnetic field is small and the signal received by the probe Hp is big (Fig.2). Low conductivity of austenite is a defects of the structure in case of residual austenite in the martensite structure, which with regard to the magnesite structure is as 1 5. Eddy currents produced in the studied area are subject to excitation in effect of small conductivity of austenite grains in the structure of the studied material. [Pg.20]

The aqueous solution has a low conductivity, indicating that mercury(II) chloride dissolves essentially as molecules Cl—Hg—Cl and these linear molecules are found in the solid and vapour. A solution of mercury(II) chloride is readily reduced, for example by tin(ll) chloride, to give first white insoluble mercury(I) chloride and then a black metallic deposit of mercury, The complexes formed from mercury(II) chloride are considered below. [Pg.438]

High process temperatures generally not achievable by other means are possible when induction heating of a graphite susceptor is combined with the use of low conductivity high temperature insulation such as flake carbon interposed between the coil and the susceptor. Temperatures of 3000°C are routine for both batch or continuous production. Processes include purification, graphitization, chemical vapor deposition, or carbon vapor deposition to produce components for the aircraft and defense industry. Figure 7 illustrates a furnace suitable for the production of aerospace brake components in a batch operation. [Pg.129]

The maximum recommended film thickness is 25 p.m. At greater thicknesses, volatiles from the curing reaction, mainly water and some formaldehyde and phenol, can cause defects. These coatings have excellent electrical insulation properties, ie, up to 20 V/p.m, because of low moisture absorption and low conductance. The coatings are hard with low flexibiUty, depending on curing conditions and film thickness. [Pg.303]

The principal physical properties influencing ink performance ate surface tension and viscosity. High surface tension is desired for good droplet formation and capillary refill in dtop-on-demand ink jet. Low viscosity is desired because less energy is required to pump and eject ink. Conductivity is also an important parameter. Continuous ink-jet inks must have some conductivity to allow for charging. Low conductivity is generally preferred for impulse, particularly thermal ink jet, because excess ions can cause corrosion of the printhead. [Pg.53]

Eor metals, S generally varies between about 0 and 40 ]lV/K low conductivity semiconductors and insulators have values of S up to 1000 ]lV/K and higher. [Pg.506]

Because of the stringent U.S. requirements on handling lead-based powders, these stabilizers are only found in flexible electrical wire insulation in the United States because no other stabilizers have been developed which have the low conductivity afforded by these materials. [Pg.6]

Solid Electrolyte Systems. Whereas there has been considerable research into the development of soHd electrolyte batteries (18—21), development of practical batteries has been slow because of problems relating to the low conductivity of the soHd electrolyte. The development of an all sohd-state battery would offer significant advantages. Such a battery would overcome problems of electrolyte leakage, dendrite formation, and corrosion that can be encountered with Hquid electrolytes. [Pg.583]

Aqueous solutions have low conductivities resulting from extensive complex ion formation. The haUdes, along with the chalcogenides, are sometimes used in pyrotechnics to give blue flames and as catalysts for a number of organic reactions. [Pg.394]

Materials are usually classified according to the specific conductivity mode, eg, as insulators, which have low conductivity and low mobihty of carriers. Metahic conductors, which include some oxides, have a high conductivity value which is not a strong (exponential) function of temperature. Semiconductors are intermediate and have an exponential temperature dependence. Figure 1 gives examples of electrical conductivities at room temperature for these various materials. [Pg.349]

Pure and almost stoichiometric NiO shows, therefore, a very low conductivity of about 10 (Hem) at 25°C but, as illustrated in Figure 7, this value can be increased to about 1 (Hem) by the addition of lithium (11). This stabilizes the formation of the Nfi" states at a higher concentration, resulting in higher and more reproducible conductivities. Similarly, the insulating characteristics of NiO can be improved by the addition of a stable trivalent ion such as Cr " in soHd solution. This addition decreases the fraction of Nfi" ions formed. Because electron transfer between Ni " and Cr " is not favorable, the overall conductivity is substantially decreased. [Pg.358]

Mttltilayer Multilayer systems consist of series of radiation-reflecdive shields of low emittance separated by fillers or spacers of veiy low conductance and exposed to a high vacuum. [Pg.1099]

Cross-flow-elec trofiltratiou (CF-EF) is the multifunctional separation process which combines the electrophoretic migration present in elec trofiltration with the particle diffusion and radial-migration forces present in cross-flow filtration (CFF) (microfiltration includes cross-flow filtration as one mode of operation in Membrane Separation Processes which appears later in this section) in order to reduce further the formation of filter cake. Cross-flow-electrofiltratiou can even eliminate the formation of filter cake entirely. This process should find application in the filtration of suspensions when there are charged particles as well as a relatively low conduc tivity in the continuous phase. Low conductivity in the continuous phase is necessary in order to minimize the amount of elec trical power necessaiy to sustain the elec tric field. Low-ionic-strength aqueous media and nonaqueous suspending media fulfill this requirement. [Pg.2008]

Gaskets are veiy important, since thev not only keep the streams separated and prevent leaks from the cell, they have the manifolds to conduct feeds. Doth concentrate and diluate, built into them. No other practical means of feeding the stack is used in the veiy cramped space required by the need to keep cells thin because the diluate has veiy low conductivity. The manifolds are formed by ahgning holes in membrane and gasket. [Pg.2031]

In electrochemical protection the necessary range of protection current is achieved by an appropriate arrangement of the electrodes. It follows that measures which raise the polarization resistance are beneficial. Coated objects have a coating resistance (see Section 5.2), which can be utilized in much the same way as the polarization resistance in Eq. (2-45). Therefore, the range in the medium can be extended almost at will by coatings for extended objects, even at low conductivity. However, the range is then limited by current supply to the object to be protected (see Section 24.4). [Pg.51]

As an example of potential distribution, Fig. 20-8 shows the potential on the vertical axis in a 300-liter electric storage reservoir. The water had an extremely low conductivity of x (20°C) = 30 fiS cm l A Mg rod anode served for cathodic protection it reached to just above the built-in heating element to give uniform current distribution. This was confirmed by the measurements. [Pg.453]

Table (a) shows experimental data [24] for the initial charge density exiting a fuel filter Qq plus the charge density Q remaining 30 s downstream. At low conductivity the charge decays much faster than predicted by an exponential relaxation law [Eq. (2-3.7)] and instead follows a hyperbolic relaxation law [24] given by... [Pg.211]


See other pages where Low conductance is mentioned: [Pg.221]    [Pg.188]    [Pg.574]    [Pg.165]    [Pg.77]    [Pg.236]    [Pg.238]    [Pg.399]    [Pg.533]    [Pg.551]    [Pg.12]    [Pg.225]    [Pg.410]    [Pg.410]    [Pg.112]    [Pg.510]    [Pg.533]    [Pg.7]    [Pg.359]    [Pg.353]    [Pg.221]    [Pg.336]    [Pg.1472]    [Pg.360]    [Pg.38]    [Pg.161]    [Pg.196]    [Pg.196]    [Pg.100]    [Pg.103]    [Pg.140]    [Pg.213]    [Pg.152]    [Pg.153]   
See also in sourсe #XX -- [ Pg.231 ]




SEARCH



Conductive low cost

Conductivity at Low Temperatures

Conductivity at Very Low Temperatures

Low conductivity

Low conductivity media

Low field conductivity

Proton Conductivity at Low Temperature

Thermal Conductivities of Insulating Materials at Low Temperatures (Grober)

Thermal Conductivity at Low Pressures

Thermal Conductivity at Low Temperatures

Thermal conductivity, low-density

© 2024 chempedia.info