Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Living radical copolymerization transfer

Klumperman and coworkers [259] observed that while it is lately quite common to treat living radical copolymerization as being completely analogous to its radical counterpart, small deviatiOTis in the copolymerization behavior do occur. They interpret the deviations on the basis of the reactions being specific to controlled/living radical polymerization, such as activation—deactivation equilibrium in ATRP. They observed that reactivity ratios obtained from atom transfer radical copolymerization data, interpreted according to the conventional terminal model deviate from the true reactivity ratios of the propagating radicals. [Pg.121]

P(S- - -BMA) and PS-6-P(S-g - -BMA) block graft copolymers were prepared using TEMPO living and atom transfer radical polymerization techniques (45). The backbone of the P(S-g-f-BMA) copolymer was synthesized by TEMPO living radical copolymerization of styrene and p-chloromethylstyrene. Subsequently, the chloromethyl groups in the presence of CuBr and bipyridine were used as initiation sites of ATRP of t-BMA. In the case of PS-6-P(S-g- -BMA) copolymer, the synthesis was performed in a similar way. [Pg.3606]

Most of the methods for synthesizing block copolymers were described previously. Block copolymers are obtained by step copolymerization of polymers with functional end groups capable of reacting with each other (Sec. 2-13c-2). Sequential polymerization methods by living radical, anionic, cationic, and group transfer propagation were described in Secs. 3-15b-4, 5-4a, and 7-12e. The use of telechelic polymers, coupling and transformations reactions were described in Secs. 5-4b, 5-4c, and 5-4d. A few methods not previously described are considered here. [Pg.759]

Even though the discussion has been mainly on homopolymerization, the same polymerization mechanism steps are valid for copolymerization with coordination catalysts. In this case, for a given catalyst/cocatalyst system, propagation and transfer rates depend not only on the type of coordinating monomer, but also on the type of the last monomer attached to the living polymer chain. It is easy to understand why the last monomer in the chain will affect the behavior of the incoming monomer as the reacting monomer coordinates with the active site, it has to be inserted into the carbon-metal bond and will interact with the last (and, less likely, next-to-last or penultimate) monomer unit inserted into the chain. This is called the terminal model for copolymerization and is also commonly used to describe free-radical copolymerization. In the next section it will be seen that, with a proper transformation, not only the same mechanism, but also the same polymerization kinetic equations for homopolymerization can be used directly to describe copolymerization. [Pg.52]

Lacroix and coworkers reported a reverse iodine transfer pol5mierization (RITP), where elemental iodine is used as a control agent in living radical polymerization [288]. Styrene, butyl acrylate, methyl acrylate, and butyl ot-fluoroacrylate were homopolymerized, using a radical catalyst and I2 as a chain transfer agent. Methyl acrylate was also copolymerized with vinyUdene chloride using this process. [Pg.130]

Living atom-transfer radical copolymerization (ATPR) of4-styryldiphenylpho-sphine (SDPP) with styrene was applied by Poli s group as a new method for the construction of polymer-supported phosphine ligands (Scheme 2.44) [142]. Copolymers with a statistical distribution of the monomers were obtained by means of CuBr/MegTREN as catalyst. Ethyl bromoisobutyrate was used as initiator. A small amount of CuBr2 was added to prevent a slower deactivation... [Pg.117]

Anionic polymerization of polystyrene takes place very rapidly- much faster than free radical polymerization. When practiced on a large scale, this gives rise to heat transfer problems and limits its commercial practice to special cases, such as block copolymerization by living reactions. We employ anionic polymerization to make tri-block copolymer rubbers such as polystyrene-polybutadiene-polystyrene. This type of synthetic rubber is widely used in the handles of power tools, the soft grips of pens, and the elastic side panels of disposable diapers. [Pg.331]

Copolymerizations initiated by lithium metal should give the same product as produced from lithium alkyls. Usually the radical ends produced by electron transfer initiation have so short a lifetime they can have no influence on the copolymerization. This is true for instance in the copolymerization of isoprene and styrene (50). The product is identical if initiated by lithium metal or by butyllithium. With the styrene-methylmethacrylate system, however, differences are observed (79,80,82). Whereas the butyllithium initiated copolymer contains no styrene at low conversions, the one initiated by lithium metal has a high styrene content if the reaction is carried out in bulk and a moderate one even in tetrahydrofuran. These facts led O Driscoll and Tobolsky (80) to suggest that initiation with lithium occurs by electron exchange and that in this case the radical ends are sufficiently long-lived to produce simultaneous radical and anionic reactions at opposite ends of the chain. Only in certain rather exceptional circumstances would the free radical reaction be of importance. Some of the conditions required have been discussed by Tobolsky and Hartley (111). The anionic reaction should be slow. This is normally true for lithium based catalysts in hydrocarbon solvents. No evidence of appreciable radical participation is observed for initiation by sodium and potassium. The monomers should show a fast radical reaction. If styrene is replaced by isoprene, no isoprene is found in the copolymer for isoprene polymerizes slowly by free radical initiation. Most important of all, initiation should be slow to produce a low steady concentration of radical-anions. An initiator which produces an almost instantaneous and complete electron transfer to monomer produces a high radical concentration which will ensure their rapid mutual termination. [Pg.99]

Spontaneous copolymerization of cyclopentene (CPT) with sulfur dioxide (SOt) suggests the participation of a charge transfer complex in the initiation and propagation step of the copolymerization. The ESR spectrum together with chain transfer and kinetic studies showed the presence of long lived SOg radical. Terpolymerization with acrylonitrile (AN) was analyzed as a binary copolymerization between CPT-SOt complex and free AN, and the dilution effect proved this mechanism. Moderately high polymers showed enhanced thermal stability, corresponding to the increase of AN content in the terpolymer. [Pg.222]

Frechet and coworkers recently described how living free radical polymerization can be used to make dendrigrafts. Either 2,2,6,6-tetramethylpiperidine oxide (TEMPO) modified polymerization or atom transfer radical polymerization (ATRP) can be used [96] (see Scheme 10). The method requires two alternating steps. In each polymerization step a copolymer is formed that contains some benzyl chloride functionality introduced by copolymerization with a small amount of p-(4-chloromethylbenzyloxymethyl) styrene. This unit is transformed into a TEMPO derivative. The TEMPO derivative initiates the polymerization of the next generation monomer or comonomer mixture. Alternatively, the chloromethyl groups on the polymer initiate an ATRP polymerization in the presence of CulCl or CuICl-4,4T dipyridyl complex. This was shown to be the case for styrene and n-butylmethacrylate. SEC shows clearly the increase in molecu-... [Pg.204]


See other pages where Living radical copolymerization transfer is mentioned: [Pg.7]    [Pg.1]    [Pg.616]    [Pg.621]    [Pg.119]    [Pg.39]    [Pg.374]    [Pg.107]    [Pg.626]    [Pg.92]    [Pg.223]    [Pg.270]    [Pg.274]    [Pg.207]    [Pg.514]    [Pg.173]    [Pg.145]    [Pg.92]    [Pg.12]    [Pg.57]    [Pg.76]    [Pg.1876]    [Pg.2044]    [Pg.243]    [Pg.233]    [Pg.630]    [Pg.100]    [Pg.521]    [Pg.263]    [Pg.430]    [Pg.452]    [Pg.468]    [Pg.100]    [Pg.70]    [Pg.7]    [Pg.30]    [Pg.160]    [Pg.61]    [Pg.125]   


SEARCH



Living copolymerization

Living radical

Living radical copolymerization

Radical copolymerization

Radical transfer

Transfer copolymerizing

© 2024 chempedia.info