Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lithium carbonate solution

Fichter and Kern O first reported that uric acid could be electrochemically oxidized. The reaction was studied at a lead oxide electrode but without control of the anode potential. Under such uncontrolled conditions these workers found that in lithium carbonate solution at 40-60 °C a yield of approximately 70% of allantoin was obtained. In sulfuric acid solution a 63% yield of urea was obtained. A complete material balance was not obtained nor were any mechanistic details developed. In 1962 Smith and Elving 2) reported that uric acid gave a voltammetric oxidation peak at a wax-impregnated spectroscopic graphite electrode. Subsequently, Struck and Elving 3> examined the products of this oxidation and reported that in 1 M HOAc complete electrochemical oxidation required about 2.2 electrons per molecule of uric acid. The products formed were 0.25 mole C02,0.25 mole of allantoin or an allantoin precursor, 0.75 mole of urea, 0.3 mole of parabanic acid and 0.30 mole of alloxan per mole of uric acid oxidized. On the basis of these products a scheme was developed whereby uric acid (I, Fig. 1) is oxidized in a primary 2e process to a shortlived dicarbonium ion (Ha, lib, Fig. 1) which, being unstable, under-... [Pg.53]

Also, using n-Ti02 as an anode and p-GaP as a cathode in 0.1 M lithium carbonate solution, under illumination on both electrodes, methanol was produced (3 x 10-3 mol) at a current efficiency... [Pg.349]

The trihydrate salt is obtained by neutrahzation of lithium hydroxide or lithium carbonate solution with pure hydriodic acid followed by concentration of the solution for crystallization ... [Pg.504]

Dissolution was carried out with the paddle method according to USP XXI, using a Prolabo dissolution tester. The dissolution medium was 1000 ml of distilled water at 37 0.5°C and 50 rev min-1. At appropriate time intervals, 5 ml of sample was withdrawn and an equal volume of medium was added to maintain a constant volume. Sample were filtered, diluted with lithium carbonate solution as an internal standard, and analysed using a Dr Lange MD 70 flame photometer. Each dissolution profile is the average of six separate tablets. [Pg.34]

The behavior of solutions of each substance was explored in the helix, lithium carbonate solution being the last used. The effect of concentration level was then examined with the solution in the equipment, lithium carbonate. It was discarded and replaced with calcium sulfate, which is being studied more intensely. It is hoped that the results of these runs will be correlated with those from pilot plants and operational plants distilling sea water. [Pg.112]

When 10 volunteers were given 500 ml of a 0.1% lithium carbonate solution (13.5 mmol of lithium) intravenously over 1 hour, the peak serum concentration was 0.93 mmol/1, the elimination half-life was 7.8 hours, and there were no adverse effects (529). [Pg.154]

Ans. Lithium carbonate solutions become hot because dissolution is accompanied by the evolution of heat. Therefore, by heating a saturated solution of lithium carbonate, salt would precipitate. [Pg.140]

M sodium bicarbonate (b) What is the concentration of a lithium carbonate solution that is 0.595 A/in LL ... [Pg.164]

To absolution of 1.00 mol of ethyl lithium in 800-900 ml of diethyl ether (see Chapter II, Exp. 1) was added, with cooling between -20 and -10°C, 0.50 nol of dry propargyl alcohol, dissolved in 100 ml of diethyl ether. Subsequently 1.1 mol of trimethylchlorosilane was introduced over a period of 25 min with cooling between -15 and +5°C. After stirring for an additional 2 h at about 30°C the suspension was poured into a solution of 30 g of acetic acid in 150 ml of water. After stirring for 1 h at room temperature the layers were separated and the aqueous layer v/as extracted four times with diethyl ether. The combined ethereal solutions were washed with sodium hydrogen carbonate solution in order to neutralize acetic acid, and were then dried over magnesium sulfate. The diethyl ether was removed by evaporation in a water-pump vacuum and the residue distilled... [Pg.58]

One ion-exchange process, which was used for several years by Quebec Lithium Corp., is based on the reaction of P-spodumene with an aqueous sodium carbonate solution in an autoclave at 190—250°C (21). A slurry of lithium carbonate and ore residue results, and is cooled and treated with carbon dioxide to solubilize the lithium carbonate as the bicarbonate. The ore residue is separated by filtration. The filtrate is heated to drive off carbon dioxide resulting in the precipitation of the normal carbonate. [Pg.222]

Lithium Carbonate. Lithium carbonate [554-13-2], Li2C02, is produced in industrial processes from the reaction of sodium carbonate and Hthium sulfate or Hthium chloride solutions. The reaction is usually performed at higher temperatures because aqueous Hthium carbonate solubiHty decreases with increasing temperatures. The solubiHty (wt %) is 1.52% at 0°C, 1.31% at 20°C, 1.16% at 40°C, 1.00% at 60°C, 0.84% at 80°C, and 0.71% at 100°C. Lithium carbonate is the starting material for reactions to produce many other Hthium salts, including the hydroxide. Decomposition of the carbonate occurs above the 726°C melting point. [Pg.225]

Lithium Iodide. Lithium iodide [10377-51 -2/, Lil, is the most difficult lithium halide to prepare and has few appHcations. Aqueous solutions of the salt can be prepared by carehil neutralization of hydroiodic acid with lithium carbonate or lithium hydroxide. Concentration of the aqueous solution leads successively to the trihydrate [7790-22-9] dihydrate [17023-25-5] and monohydrate [17023-24 ] which melt congmendy at 75, 79, and 130°C, respectively. The anhydrous salt can be obtained by carehil removal of water under vacuum, but because of the strong tendency to oxidize and eliminate iodine which occurs on heating the salt ia air, it is often prepared from reactions of lithium metal or lithium hydride with iodine ia organic solvents. The salt is extremely soluble ia water (62.6 wt % at 25°C) (59) and the solutions have extremely low vapor pressures (60). Lithium iodide is used as an electrolyte ia selected lithium battery appHcations, where it is formed in situ from reaction of lithium metal with iodine. It can also be a component of low melting molten salts and as a catalyst ia aldol condensations. [Pg.226]

Lithium Hydroxide. Lithium hydroxide monohydrate [1310-66-3], Li0H-H2 0, is prepared industrially from the reaction of lithium carbonate and calcium hydroxide in aqueous slurries. The calcium carbonate is subsequently separated to yield a lithium hydroxide solution from which lithium hydroxide monohydrate can be crystallized. Lithium hydroxide is the least soluble alkaH hydroxide, and solubiHty varies Htfle with temperature. [Pg.226]

Lithium Chloride. Of the metal haUdes, calcium bromide [7789-41-5] CaBr2, ziac chloride [7646-85-7] ZnCl2, CaCl2, and lithium chloride [7447-41-8] LiCl, (Class 1, nonregenerative) are the most effective for water removal (4). AH are available ia the form of dehquescent crystals. The hydrates of LiCl are LiCl-nH2 O, where n = 1, 2, or 3. Lithium chloride solutions are more stable ia air and less corrosive than the other metal haUdes. The high solubihty of lithium carbonate [554-13-2] Li2C02, usually eliminates scale formation problems (see LiTHlUM COMPOUNDS). [Pg.507]

It is not advisable to store large quantities of picrates for long periods, particularly when they are dry due to their potential EXPLOSIVE nature. The free base should be recovered as soon as possible. The picrate is suspended in an excess of 2N aqueous NaOH and warmed a little. Because of the limited solubility of sodium picrate, excess hot water must be added. Alternatively, because of the greater solubility of lithium picrate, aqueous 10% lithium hydroxide solution can be used. The solution is cooled, the amine is extracted with a suitable solvent such as diethyl ether or toluene, washed with 5N NaOH until the alkaline solution remains colourless, then with water, and the extract is dried with anhydrous sodium carbonate. The solvent is distilled off and the amine is fractionally distilled (under reduced pressure if necessary) or recrystallised. [Pg.57]

A solution of 16jS-methyl-l la,17a,21-trihydroxy-5j5-pregnane-3,20-dione 21-acetate (52), 45 g, in dioxane (297 ml) is cooled to 15° and treated over a 5 min period with a solution of bromine (34.2 g) in dioxane (594 ml) precooled to 18°. After 2 min a solution of sodium acetate (60 g) in water (600 ml) is added and the mixture poured into ice water (8 liters). The precipitate is filtered off, washed to neutrality with water, and dried to give the crude dibromide (53), 55.7 g mp 125-126° (dec.) [aJu 58°. A mixture of dibromide (53), 55.5 g, lithium bromide (27.8 g), lithium carbonate (27.8 g) and DMF (1.11 liters) is refluxed under rapid stirring for 6 hr. The mixture is concentrated under vacuum to about 250 ml, poured into ice water (8 liters) containing hydrochloric acid (250 ml), and extracted with methylene dichloride. The extracts are washed to neutrality with water and evaporated to dryness. The residue is dissolved in acetone, evaporated to dryness under reduced pressure, redissolved in acetone and crystallized by the additon of hexane. This gives the dienone (54) 24.4 g, mp 236-239°. [Pg.300]

A 250-mI round-bottom flask fitted with a condenser (drying tube) is charged with a mixture of 2-bromocholestanone (4.7 g, 0.01 mole), lithium carbonate (7.4 g, 0.10 mole), and 100 ml of dimethylformamide. The system is flushed with nitrogen and then refluxed (mantle) for 18-24 hours. After the reflux period, the solution is cooled and poured into 500 ml of water. The aqueous mixture is extracted with 50 ml of ether, the ether extract is dried (sodium sulfate), and the ether is removed (rotary evaporator). The residue may be recrystallized from ethanol or methanol. J -Cholestenone is a white solid, mp 98-100°. [Pg.51]

The Number of Dipoles per Unit Volume. The Entropy Change Accompanying Proton Transfers. The Equilibrium between a Solid and Its Saturated Solution. Examples of Values of L and AF°. The Change of Solubility with Temperature. Uni-divalent and Other Solutes. Lithium Carbonate in Aqueous Solution. H2COj in Aqueous Solution. Comparison between HjCOj and Li2C03 in Aqueous Solution. Heats of Solution and the Conventional Free Energies and Entropies of Solution. [Pg.197]

Lithium Carbonate in Aqueous Solution. As an illustration, we shall evaluate the conventional AF° and AS0 for lithium carbonate in aqueous solution. At 25°C the concentration of the saturated solution is 0.169 molal.1 In this solution the molality of the Li+ ion is of course 0.338. The activity coefficient of the Li2CO.t in the saturated solution is not accurately known, but its value is not far from y,at = 0.59. Substituting in (186) we have then... [Pg.209]

Discuss the sign and the magnitude of all the quantities given in Tables 34 and 36 for the solution of lithium carbonate, in comparison with the values for other substanoes. [Pg.216]

Among many polar aprotic solvents, including ethers, BL, PC, and ethylene carbonate (EC), methyl formate (MF) seems to be the most reactive towards lithium. It is reduced to lithium formate as a major product which precipitates on the lithium surface and passivates it [24], The presence of trace amounts of the two expected contaminants, water and methanol, in MF solutions does not affect the surface chemistry. C02 in MF causes the formation of a passive film containing both lithium formate and lithium carbonate. [Pg.424]

Lithium carbonate and hydrocarbon were identified in XPS spectra of graphite electrodes after the first cycle in LiPF6/EC-DMC electrolyte [104]. Electrochemical QCMB experiments in LiAsF6/EC-DEC solution [99] clearly indicated the formation of a surface film at about 1.5 V vs. (Li/Li+). However the values of mass accumulation per mole of electrons transferred (m.p.e), calculated for the surface species, were smaller than those of the expected surface compounds (mainly (CF OCC Li ). This was attributed to the low stability of the SEI and its partial dissolution. [Pg.441]

Dimethylphenylsilyl lithium (1 mmol, above THF solution) was added to copper(i) iodide (0.5 mmol) at — 23 °C, and the mixture was stirred at this temperature for 4h. The enone (0.75-0.5mmol) was then added, and stirring was continued at —23 °C for 0.5 h. The mixture was then poured on to ice(25 g)/HCl(5 ml), and extracted with chloroform (3 x 25 ml). The combined extracts were filtered, washed with HCI (25ml, 3m), water (25 ml), saturated sodium hydrogen carbonate solution (25 ml) and water (25 ml), and dried. Concentration and purification by preparative t.l.c. (eluting solvent 3 7 ether petrol) gave the /J-silylketone (40-99%). [Pg.37]


See other pages where Lithium carbonate solution is mentioned: [Pg.382]    [Pg.142]    [Pg.258]    [Pg.259]    [Pg.230]    [Pg.255]    [Pg.211]    [Pg.382]    [Pg.142]    [Pg.258]    [Pg.259]    [Pg.230]    [Pg.255]    [Pg.211]    [Pg.64]    [Pg.222]    [Pg.222]    [Pg.222]    [Pg.223]    [Pg.223]    [Pg.227]    [Pg.299]    [Pg.214]    [Pg.108]    [Pg.813]    [Pg.425]    [Pg.425]    [Pg.440]    [Pg.448]    [Pg.173]   
See also in sourсe #XX -- [ Pg.142 ]




SEARCH



Carbon-1 3 solution

Carbonate Solution

Lithium carbon

Lithium carbonate

Lithium carbonate, solution preparation

Lithium solution

© 2024 chempedia.info