Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquids steam distillation

Steam Distillation. Distillation of a Pair of Immiscible Liquids. Steam distillation is a method for the isolation and purification of substances. It is applicable to liquids which are usually regarded as completely immiscible or to liquids which are miscible to only a very limited extent. In the following discussion it will be assumed that the liquids are completely immiscible. The saturated vapours of such completely immiscible liquids follow Dalton s law of partial pressures (1801), which may be stated when two or more gases or vapoms which do not react chemically with one another are mixed at constant temperature each gas exerts the same pressure as if it alone were present and that... [Pg.12]

Binary mixtures of immiscible liquids steam distillation... [Pg.3881]

Insoluble liquids steam distillation The mutual solubility of some liquids is so small that they can be considered substantially insoluble points K and M (Fig. 9.8) are then for all practical purposes on the vertical axes of these diagrams. This is the case for a mixture such as a hydrocarbon and water, for example. If the liquids are completely insoluble, the vapor pressure of either component cannot be influenced by the presence of the other and each exerts its true vapor pressure at the prevailing temperature. When the sum of the separate vapor pressures equals the total pressure, the mixture boils, and the vapor composition is readily computed, assuming the applicability of the simple gas law,... [Pg.354]

Steam-distillation. Many water-insoluble compounds, both solid and liquid, may be readily purified by distillation in a... [Pg.32]

The material to be steam-distilled (mixed with some water if a solid compound, but not otherwise) is placed in C, and a vigorous current of steam blown in from D. The mixture in C is thus rapidly heated, and the vapour of the organic compound mixed with steam passes over and is condensed in E. For distillations on a small scale it is not necessary to heat C if, however, the flask C contains a large volume of material or material which requires prolonged distillation, it should be heated by a Bunsen burner, otherwise the steady condensation of steam in C will produce too great a volume of liquid. [Pg.33]

If the organic compound which is being steam-distilled is freely soluble in water, an aqueous solution will ultimately collect in the receiver F, and the compound must then be isolated by ether extraction, etc. Alternatively, a water-insoluble compound, if liquid, will form a separate layer in F, or if solid, will probably ciystallise in the aqueous distillate. When steam-distilling a solid product, it is sometimes found that the distilled material crystallises in E, and may tend to choke up the condenser, in such cases, the water should be run out of the condenser for a few minutes until the solid material has melted and been carried by the steam down into the receiver. [Pg.34]

Steam Distillatioo. A compact and efficient apparatus is shown in Fig, 43. The liquid to be steam-distilled is placed in the tube A and water is placed in the outer flask B. On heating B, steam passes into the inner tube A through the inlet tube C, and steam-volatile compounds are rapidly distilled and collected in the receiver placed at the end of the condenser D. [Pg.66]

Fit securely to the lower end of the condenser (as a receiver) a Buchner flask, the side-tube carrying a piece of rubber tubing which falls well below the level of the bench. Steam-distil the ethereal mixture for about 30 minutes discard the distillate, which contains the ether, possibly a trace of unchanged ethyl benzoate, and also any biphenyl, CeHs CgHs, which has been formed. The residue in the flask contains the triphenyl carbinol, which solidifies when the liquid is cooled. Filter this residual product at the pump, wash the triphenyl-carbinol thoroughly with water, drain, and then dry by pressing between several layers of thick drying-paper. Yield of crude dry product, 8 g. The triphenyl-carbinol can be recrystallised from methylated spirit (yield, 6 g.), or, if quite dry, from benzene, and so obtained as colourless crystals, m.p. 162. ... [Pg.285]

The steam-distillation is continued for 5 minutes after steam can first be seen entering the condenser the ideal rate of distillation is about 4 -5 ml. of distillate per minute, but this is not critical and may be varied within reasonable limits. The receiver J is then lowered from the lip K of the condenser and the steam-distillation continued for a further two minutes, thus ensuring that no traces of liquid containing ammonia are left on the inside of the condenser. At the end of this time any liquid on the lip K is rinsed with distilled water into J, which is then ready for titration. It is important that the receiver and its contents are kept cold during the distillation and it is advisable to interpose a piece of asbestos board or other screen so that it is not exposed to the heat from the burner under the steam generator. [Pg.496]

It must be borne in mind that in spite of the fact that the solvents have normal boiling points below 90-95°, they cannot always be completely removed by heating on a steam or water bath when they form part of mixtures with less-volatile liquids. Simple distillation may lead to mixtures with higher boiling points than the individual solvents, so that separation of the latter may not be quite complete. In such cases the distillation should be completed with the aid of an air bath (Fig. 77,5,3) or an oil bath the Are hazard is considerably reduced since most of the solvent will have been removed. [Pg.90]

Sometimes an air bubble enters the tube E and prevents the regular flow of liquid from B the air bubble is easily removed by shaking the rubber tube. The flask A is heated (e.g., by a ring burner) so that distillation proceeds at a rapid rate the process is a continuous one. If the liquid to be steam distilled is lighter than water, the receiver must be modified so that the aqueous liquors are drawn off from the bottom (see Continvmia Extraction of Liquids, Section H, 44). [Pg.149]

The steam distillation of small quantities of material may be conducted in the apparatus of Fig. 11, 41, 5. The substance to be distilled is placed in the small inner tube (a specially constructed test-tube) and water is boiled in the outer bolt-head flask. The volume of the liquid in the inner tube does not increase appreciably since it is immersed in the hot liquid in the flask. [Pg.149]

Pour the resulting dark reddish-brown liquid into 500 ml. of water to which 17 ml. of saturated sodium bisulphite solution has been added (the latter to remove the excess of bromine). Steam distil the resulting mixture (Fig. II, 41,1) , collect the first portion of the distillate, which contains a little unchanged nitrobenzene, separately. Collect about 4 litres of distillate. Filter the yellow crystalline solid at the pump, and press well to remove the adhering liquid. The resulting crude m-bromonitrobenzene, m.p. 51-52°, weighs 110 g. If required pure, distil under reduced pressure (Fig. II, 19, 1) and collect the fraction of b.p. 117-118°/9 mm. it then melts at 56° and the recovery is about 85 per cent. [Pg.537]

Reduction of A-nitrosomethylaniline. Into a 1 litre round-bottomed flask, fitted with a reflux condenser, place 39 g. of A-nitroso-methylaniline and 75 g. of granulated tin. Add 150 ml. of concentrated hydrochloric acid in portions of 25 ml. (compare Section IV.34) do not add the second portion until the vigorous action produced by the previous portion has subsided, etc. Heat the reaction mixture on a water bath for 45 minutes, and allow to cool. Add cautiously a solution of 135 g. of sodium hydroxide in 175 ml. of water, and steam distil (see Fig. II, 40, 1) collect about 500 ml. of distillate. Saturate the solution with salt, separate the organic layer, extract the aqueous layer with 50 ml. of ether and combine the extract with the organic layer. Dry with anhydrous potassium carbonate, remove the ether on a water bath (compare Fig. II, 13, 4), and distil the residual liquid using an air bath (Fig. II, 5, 3). Collect the pure methylaniline at 193-194° as a colourless liquid. The yield is 23 g. [Pg.570]

Chlorobenzene. Prepare a solution of phenyldiazonium chloride from 31 g. (30 -5 ml.) of aniUne, 85 ml. of concentrated hydrochloric acid, 85 ml, of water, and a solution of 24 g. of sodium nitrite in 50 ml. of water (for experimental details, see Section IV,60). Prepare cuprous chloride from 105 g. of crystallised copper sulphate (Section 11,50,1), and dissolve it in 170 ml. of concentrated hydrochloric acid. Add the cold phenyl diazonium chloride solution with shaking or stirring to the cold cuprous chloride solution allow the mixture to warm up to room temperature. Follow the experimental details given above for p-chlorotoluene. Wash the chlorobenzene separated from the steam distillate with 40 ml. of 10 per cent, sodium hydroxide solution (to remove phenol), then with water, dry with anhydrous calcium chloride or magnesium sulphate, and distil. Collect the chlorobenzene (a colourless liquid) at 131-133° (mainly 133°), The yield is 29 g. [Pg.601]

Dissolve the solid in 700 ml. of water in a 1500 ml. round-bottomed flask, and add a solution of 88 ml. of concentrated sulphuric acid in about 200 ml. of water until the liquid has a distinct odour of sulphur dioxide sufficient heat will be liberated in the neutralisation to cause the solution to boil. Immediately steam distil the liquid (Fig. II, 40, 1 it is better to use the apparatus shown in Fig. II, 41, 3) until a sample of the distillate gives only a slight precipitate with bromine water. About 700 ml. of distillate should be collected. Saturate the steam distillate with salt, extract the dl with ether, dry the extract with a little anhydrous magnesium or calcium sulphate, distil oflF the ether (compare Fig. II, 13, 4, but with a 50 ml. Claisen flask replacing the distilling flask) and distil the residue under diminished pressure. Collect the p-cresol at 95-96°/15 mm. the colourless liquid solidifies to a white crystalline solid, m.p. 31°. The yield is 24 g. [Pg.667]

Cautiously add 250 g. (136 ml.) of concentrated sulphuric acid in a thin stream and with stirring to 400 ml. of water contained in a 1 litre bolt-head or three-necked flask, and then dissolve 150 g. of sodium nitrate in the diluted acid. Cool in a bath of ice or iced water. Melt 94 g. of phenol with 20 ml. of water, and add this from a separatory funnel to the stirred mixture in the flask at such a rate that the temperature does not rise above 20°. Continue the stirring for a further 2 hours after all the phenol has been added. Pour oflF the mother liquid from the resinous mixture of nitro compounds. Melt the residue with 500 ml. of water, shake and allow the contents of the flask to settle. Pour oflF the wash liquor and repeat the washing at least two or three times to ensure the complete removal of any residual acid. Steam distil the mixture (Fig. II, 40, 1 or Fig. II, 41, 1) until no more o-nitrophenol passes over if the latter tends to solidify in the condenser, turn oflF the cooling water temporarily. Collect the distillate in cold water, filter at the pump, and drain thoroughly. Dry upon filter paper in the air. The yield of o-nitrophenol, m.p. 46° (1), is 50 g. [Pg.677]


See other pages where Liquids steam distillation is mentioned: [Pg.371]    [Pg.185]    [Pg.190]    [Pg.196]    [Pg.237]    [Pg.302]    [Pg.380]    [Pg.492]    [Pg.13]    [Pg.143]    [Pg.149]    [Pg.179]    [Pg.238]    [Pg.253]    [Pg.287]    [Pg.351]    [Pg.526]    [Pg.565]    [Pg.571]    [Pg.599]    [Pg.601]    [Pg.606]    [Pg.609]    [Pg.631]    [Pg.680]    [Pg.695]    [Pg.698]    [Pg.712]    [Pg.832]    [Pg.846]   
See also in sourсe #XX -- [ Pg.145 , Pg.146 , Pg.147 , Pg.148 , Pg.149 , Pg.150 ]




SEARCH



Distillation steam

Insoluble liquids steam distillation

Liquid distillation

Purification, liquids steam distillation

Steam distillation continuous, of liquids heavier than

© 2024 chempedia.info