Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid Water and the Ices

To go beyond this description raises the conceptual question of what is meant by the term structure . In solids, this refers to a particular topological arrangement, or configuration of atoms, which persists over the period of time necessary to observe it. In liquids, a particular topology exists for very short lifetimes, which can be observed only by methods which record the structures at even shorter times. [Pg.426]

These are, with decreasing resolution on the time scale, the methods of infrared and Raman spectroscopy, dielectrical absorption and NMR spectroscopy, and inelastic neutron scattering. Thermodynamic properties depend on the long lifetime average structures, which are observed by X-ray and neutron scattering. For each of these methods, the descriptor structure has a different meaning. [Pg.427]

2 The descriptor hydrogen bond is not used in this paper. [Pg.427]

While the thermodynamic evidence may favor the mixture models, the diffraction studies from the static crystalline state tend to support the continuum model. The water molecules in the ices and high hydrates are always four-coordinated. [Pg.428]

More crystallographic variations of the water models are the vacant lattice, framework or cage models which include interstitial water molecules within a four-connected network. In one of these models, the void in the ice-like structure is occupied by a water molecule which at any particular instant may be nonbonded [Pg.428]


Take, finally, a system formed of ice and liquid at a temperature higher than < , and suppose that the representative point is on the curve OFj of the points of fusion the representative point being below the two curves of tensions of saturated vapor, tile liquid water and the ice may evaporate and the system is not in equilibrium. [Pg.190]

Example 5.3 Predict the degrees of freedom for (a) pure liquid water and solid ice in equilibrium (b) pure liquid water, solid ice, and water vapor in equilibrium, and (c) solid ice in equilibrium with a liquid mixture of (ethanol + water). [Pg.238]

The phase diagram for water, shown in Figure 11-39. illustrates these features for a familiar substance. The figure shows that liquid water and solid ice coexist at the normal freezing point, T = 273.15 K and P = 1.00 atm. Liquid water and water vapor coexist at the normal boiling point, P — 373.15 K and P — 1.00 atm. The triple point of water occurs at 7 = 273.16 K and P = 0.0060 atm. The figure shows that when P is lower than 0.0060 atm, there is no temperature at which water is stable as a liquid. At sufficiently low pressure, ice sublimes but does not melt. [Pg.808]

The existence of the biosphere is made possible by two factors that make life on earth viable the abundance of water and the ample supply of energy from the sun. Water, which in the earth coexists in three different phases (forms), as water vapor, liquid water, and solid ice, is the main component of living matter, while energy provides the driving force required for all living processes. Thus water and the sun s energy together create the appropriate environment for the existence of the biosphere in the extremely cold as well as in the very hot areas of the planet (Madder 1998 Starr 1997). [Pg.286]

Temperature and pressure are the two variables that affect phase equilibria in a one-component system. The phase diagram in Figure 15.1 shows the equilibria between the solid, liquid, and vapour states of water where all three phases are in equilibrium at the triple point, 0.06 N/m2 and 273.3 K. The sublimation curve indicates the vapour pressure of ice, the vaporisation curve the vapour pressure of liquid water, and the fusion curve the effect of pressure on the melting point of ice. The fusion curve for ice is unusual in that, in most one component systems, increased pressure increases the melting point, whilst the opposite occurs here. [Pg.828]

Recent advances in spectroscopic methods have enabled the water pentamer to be studied experimentally. Infrared cavity ringdown spectroscopy has been used to examine the intramolecular absorption features of the gas-phase water pentamer, which match the spectral features of the pentamer rings in liquid water and amorphous ice (Paul et al., 1999 Burnham et al., 2002). Vibration Rotation Tunnelling (VRT) spectroscopy has been used to provide a more direct probe of the water pentamer intermolecular vibrations and fine structure in liquid water (Liu et al., 1997 Harker et al., 2005). The water pentamer was found to average out... [Pg.52]

Second, the composite hat-curved-harmonic oscillator model provides a good perspective for a spectroscopic investigation of ice I (more precisely, of ice Ih), which is formed at rather low pressure near the freezing point (0°C). The molecular structure of ice I evidently resembles the water structure. Correspondingly, well-known experimental data show a similarity of the FIR spectra (unlike the low-frequency spectra) recorded in liquid water and in ice Ih. This similarity suggests an idea that rotational mobility does not differ much in... [Pg.82]

Abstract This article updates the one on the same topic published in this series in 1999. The photochemistry of PAHs and PCBs in liquid water and on ice and other solids such as silica, soil and titanium dioxide continues to be actively studied. The photochemistry of PAHs in all phases continues to be dominated by oxidation by O2, with superoxide (O2- ), excited singlet oxygen (102), and hydroxyl radical ( OH) being the active agents. The recent photochemistry of PCBs has been dominated by practical considerations, i.e. how to use photochemistry to clean up environmental problems involving PCBs. The use of surfactants, the semiconductor TiC>2, and various sources of the powerful oxidant, the hydroxyl radical, in this regard has received considerable attention. [Pg.193]

The lava lamp is a system that has two liquid phases, and the ice water is a system that has a solid phase and a liquid phase. [Pg.417]

You place an ice cube in a pot of boiling water. The water immediately stops boiling. For a moment, there are three phases of water present the melting ice cube, the hot liquid water, and the water vapor that formed just before you added the ice. Is this three-phase system in equilibrium Explain. [Pg.423]

From these arguments, we may conclude that trehalose is the best compromise to maintain an artificial H-bond network that temporarily replaces that developed by H2O molecules and avoids both those catastrophic consequences, that is the formation upon freezing of crystalline ice in that part outside macromolecules that is in contact with liquid water, and the collapse of the structure of membranes or of secondary structures of proteins upon drying due to the escape of H2O molecules. This artificial H-bond network is much less flexible than that established by H2O molecules and considerably slows down the dynamics of H2O molecules (23, 28). It consequently does not allow normal activity. It does not allow life to proceed in the same way as in the H2O network of living conditions. It nevertheless avoids irreversible transformation of the structure of the macromolecule by hydric stress, thus allowing resumption of living activities by rehydration. The discussion that has appeared in the literature to decide which mechanism is the most important, the glass... [Pg.266]

Figure 11.40(a) shows the phase diagram of water. The graph is divided into three regions, each of which represents a pure phase. The line separating any two regions indicates conditions under which these two phases can exist in equilibrium. For example, the curve between the liquid and vapor phases shows the variation of vapor pressure with temperature. (Compare this curve with Figure 11.35.) The other two curves similarly indicate conditions for equilibrium between ice and liquid water and between ice and water vapor. (Note that the solid-liquid boundary line has a negative slope.) The point at which all three curves meet is called the triple point, which is the only condition under which all three phases can be in equilibrium with one another. For water, this point is at 0.01°C and 0.006 atm. Figure 11.40(a) shows the phase diagram of water. The graph is divided into three regions, each of which represents a pure phase. The line separating any two regions indicates conditions under which these two phases can exist in equilibrium. For example, the curve between the liquid and vapor phases shows the variation of vapor pressure with temperature. (Compare this curve with Figure 11.35.) The other two curves similarly indicate conditions for equilibrium between ice and liquid water and between ice and water vapor. (Note that the solid-liquid boundary line has a negative slope.) The point at which all three curves meet is called the triple point, which is the only condition under which all three phases can be in equilibrium with one another. For water, this point is at 0.01°C and 0.006 atm.
Pak and Chang have previously developed a partition function for liquid water applying the modified theory of significant liquid structure proposed by Chang et al. There, it is assumed that Ice-I-like, Ice-III-like, and gas-like molecules exist in liquid water and the molecules like Ice I and Ice III, both of which are oscillating torsionally, are in thermodynamic equilibrium. The equilibrium constant has been taken equal to the ratio of the partition functions of the two species. Various thermodynamic properties and the surface tension of liquid water from the partition function were successfully calculated. [Pg.490]

The vapor pressure of liquid water and the sublimation pressure of ice are given in Problem 7.12. [Pg.689]

Hydrogen bonds also exist between water molecules in liquid water and in ice. Because each oxygen atom in the water molecule has two lone pairs of electrons, it can attract two hydrogen atoms from other water molecules (Fig. 5.16). [Pg.78]

When we heat an ice cube Initially at —25 C and 1 atm pressure, the temperature of the ice increases. As long as the temperature is below 0 C, the ice cube remains in the solid state. When the temperature reaches 0 C, the ice begins to melt. Because melting is an endothermic process, the heat we add at 0 C is used to convert ice to liquid water, and the temperature remains constant until all the ice has melted. Once all the ice has melted, adding more heat causes the temperature of the liquid water to increase. [Pg.440]

In general, the mechanical and thermophysical properties of a material depend on its phase. For example, as you know from your everyday experience, the density of ice is different from liquid water (ice cubes float in liquid water), and the density of liquid water is difierent from that of steam. Moreover, the properties of a material in a single phase could depend on its temperature and the surrounding pressure. For example, if you were to look up the density of liquid water in the temperature range of, say, 4° to 100°C, under standard atmospheric pressure, you would find that its density decreases with increasing temperamre in that range. Therefore, properties of materials depend not only on their phase bur also on their temperature and pressure. This is another important fret to keep in mind when selecting materials. [Pg.503]

It should be mentioned at this point that water lias an unusual solid-liquid transfer, as the solid (ice) has a larger specific volume than the corresponding liquid. Thus, the melting curve has a negative slope pressure increase favors the phase with the lower volume. This has numerous practical consequences. Vessels completely filled with water can burst when the temperature is lowered below 0 C. Icebergs swim on the ocean. Ice skaters slide on a film of liquid water as the ice is melted by the pressure applied by the skates however, this popular explanation is currently under discussion, as this effect alone is not sufficient [5]. The frictional heat and some special properties of ice surfaces play a major role as well [6J. [Pg.10]

The other two curves in Figure 5.5(a) similarly indicate conditions for coexistence between ice and liquid water and between ice and water vapor. The melting point of a solid (or the freezing point of a liquid) is the temperature at which solid and liquid phases coexist at a given pressure. The normal melting (or freezing) point refers to the " rt frsutoM m s m s) at 1 atm pressure. When the... [Pg.288]


See other pages where Liquid Water and the Ices is mentioned: [Pg.426]    [Pg.427]    [Pg.429]    [Pg.431]    [Pg.426]    [Pg.427]    [Pg.429]    [Pg.431]    [Pg.228]    [Pg.10]    [Pg.181]    [Pg.6]    [Pg.17]    [Pg.49]    [Pg.819]    [Pg.327]    [Pg.329]    [Pg.138]    [Pg.406]    [Pg.177]    [Pg.70]    [Pg.216]    [Pg.106]    [Pg.49]    [Pg.319]    [Pg.267]    [Pg.43]    [Pg.251]    [Pg.472]    [Pg.301]    [Pg.136]    [Pg.46]    [Pg.167]   


SEARCH



Liquid Water and Ice

Liquids liquid water

Water and ice

Water ice

Water liquid

© 2024 chempedia.info