Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid state quantum chemistry

J. L. Rivail and D. Rinaldi, Liquid state quantum chemistry computational applications of the polarizable continuum models, in Computational Chemistry, Review of Current Trends, J. Leszczynski, ed., World Scientific, New York (1996) pp. 139-174. [Pg.92]

V. Dillet, D. Rinoldi, and J. L. Rivail, Liquid-state quantum chemistry An improved cavity model, J. Phys. Chem. 98 5034 (1994). [Pg.92]

Liquid State Quantum Chemistry—A Cavity Model. [Pg.65]

Liquid-State Quantum Chemistry Computational Applications of the Polarizable Continuum Models (J.-L. Rivail D. Rinaldi)... [Pg.331]

Rivail, J. L. Rinaldi, D. Ruiz-Lopez, M. E In Liquid State Quantum Chemistry in Computational Chemistry Review of Current Trends, World Scientific, Singapore, 1995, p. 65. [Pg.121]

LIQUID STATE QUANTUM CHEMISTRY APPLICATION TO REACTIVITY... [Pg.187]

Liquid State Quantum Chemistry Application to Reactivity. [Pg.638]

Rivail, J., 8c Rinaldi, D. (1996). Liquid-state quantum chemistry Computational applications of the polarizable continuum models. In J. Leszczynski (Ed.), Computational chemistry, review of current trends (p. 139). Singapore World Scientific Publishing. [Pg.571]

The first explanation and use of such a pseudopotential is due to Heilman5 (1935) who used it in atomic calculations. More recently the pseudopotential concept was reformulated by Phillips and Kleinman7 who were interested in its application to the solid state.8-10 Research in both solid- and liquid-state physics with pseudopotentials was reviewed by Ziman,11 and work in the fields of atomic spectroscopy and scattering has been discussed by Bardsley.12 For an earlier review on applications to the molecular environment the reader is referred to Weeks et a/.13 In this article we shall concentrate on molecular calculations, specifically those of an ab initio nature. Our objective in Section 2 has been to outline the theoretical origins of the pseudopotential approximation, and in Section 3 we have described some of the techniques which have been used in actual calculations. Section 4 attempts to present results from a representative sample of pseudopotential calculations, and our emphasis has been to concentrate on particular molecules which have been the subjects of investigation by the various approaches, rather than to catalogue every available calculation. Finally, in Section 5, we have drawn some conclusions on the relative merits of the different methods and implementations of pseudopotentials. Some of the possible future developments are outlined in the context of the likely progress in quantum chemistry. [Pg.101]

Despite the tremendous progress made in this field, there is still a severe drawback. The quantum chemistry developed by theoretical chemists tools are primarily suited for isolated molecules in vacuum or in a dilute gas, where intermolecular interactions are negligible. Another class of quantum codes that has been developed mainly by solid-state physicists is suitable for crystalline systems, taking advantage of the periodic boundary conditions. However, most industrially relevant chemical processes, and almost all of biochemistry do not happen in the gas phase or in crystals, but mainly in a liquid phase or sometimes in an amorphous solid phase, where the quantum chemical methods are not suitable. On the one hand, the weak intermolecular forces,... [Pg.3]

If the activities of the laboratory in this field are said to be at the borders of quantum chemistry and statistical thermodynamics, these two disciplines are declared to be techniques." The problems raised by molecular liquids and solvent effects can be solved, or at least simplified by these techniques. This is firmly stated everywhere the method of calculation of molecular orbitals for the o-bonds was developed in the laboratory (Rinaldi, 1969), for instance, by giving some indications about the configuration of a molecule. The value and direction of a dipolar moment constitutes a properly quantum chemistry method to be applied to the advancing of the essential problems in the laboratory. In the same way, statistical mechanics or statistical thermodynamics constitute methods that were elaborated to render an account of the systems studied by chemists and physicists. In Elements de Mecanique Statistique, these methods are well said to constitute the second step, the first step being taken by quantum chemistry that studies the stuctures and properties of the constitutive particles. [53]... [Pg.116]

In this chapter we focus on atomistic predictions of thermophysical and mechanical properties of HMX crystals and liquid important to the development of reliable mesoscale equations of state. The outline of the remainder of the chapter is as follows In section 2 we describe briefly the philosophy and overall approach we have taken to force field development, including the results of quantum chemistry calculations for HMX and smaller model compounds that were used in the force field parameterization. The focus of section 3 is on the properties of liquid HMX, for which experimental data are completely lacking. Structural, thermal, and mechanical properties of the three pure crystal polymorphs of HMX are presented in section 4, where the results are compared to the available experimental data. At the ends of sections 3 and 4 we discuss briefly the importance of the various properties with mesoscale models of high explosives, with an emphasis on conditions relevant to weak shock initiation. We conclude in section 5, and provide our opinions (and justifications, based on our interactions with mesoscale modelers) regarding which HMX properties and phenomena should comprise the next targets for study via atomistic simulation. [Pg.281]

Chemistry of the Liquid State Current Trends in Quantum-Chemical Modeling... [Pg.332]

This approximation for Exc [ ] has proved to be remarkably successful, even when applied to systems that are quite different from the electron liquid that forms the reference system for the LDA. For many decades the LDA has been applied in, e.g., calculations of band structures and total energies in solid-state physics. In quantum chemistry, it is much less popular because it fails to provide results that are accurate enough to permit a quantitative discussion... [Pg.82]

In the seventies, most of the 37 papers (8-24) that we report are quantum chemical calculations, mainly on H502+ (8-14,20) or H30+(14-20) and a few on larger clusters with n=4-6 (8,9). However these last calculations are not accurate, obtained either from semi-empirical methods (8) or with small basis sets (DZ, 4-31G) and at the SCF level in ab initio calculations (9). The first accurate Cl calculations definitely establish the pyramidal geometry of the oxonium ion (15,16). The first ab initio determination of the barrier in H502+ appeared in 1970 (10). An attempt was made to study the effect of Cl on this barrier (11) and the abnormal polarizability of H502+ (12). At the end of this decade appeared the first Cl ab initio calculation on the excited states of H30+ (19) and the first CNDO calculations on excited states of larger clusters (20). In parallel to these quantum chemistry studies, a kinetic model (21) treats large systems with n=20 and 26, a polarisation model (22) is proposed, and a study on the liquid uses a continuum model (23). [Pg.274]

Relativity adds a new dimension to quantum chemistry, which is the choice of the Hamiltonian operator. While the Hamiltonian of a molecule is exactly known in nonrelativistic quantum mechanics (if one focuses on the dominating electrostatic monopole interactions to be considered as being transmitted instantaneously), this is no longer the case for the relativistic formulation. Numerical results obtained by many researchers over the past decades have shown how Hamiltonians which capture most of the (numerical) effect of relativity on physical observables can be derived. Relativistic quantum chemistry therefore comes in various flavors, which are more or less well rooted in fundamental physical theory and whose relation to one another will be described in detail in this book. The new dimension of relativistic Hamiltonians makes the presentation of the relativistic many-electron theory very complicated, and the degree of complexity is far greater than for nonrelativistic quantum chemistry. However, the relativistic theory provides the consistent approach toward the description of nature molecular structures containing heavy atoms can only be treated correctly within a relativistic framework. Prominent examples known to everyone are the color of gold and the liquid state of mercury at room temperature. Moreover, it must be understood that relativistic quantum chemistry provides universal theoretical means that are applicable to any element from the periodic table or to any molecule — not only to heavy-element compounds. [Pg.3]

The physics of condensed phases is commonly formulated as of infinite extent. However, solid and liquid objects in the laboratory are of finite size and terminate discontinuously in a surface (in vacuum) or an interface, under all other conditions. Atoms or molecules at the surface or interface of the condensed object find themselves in a completely different environment, compared to those in the interior of the body. They are less confined in at least one direction, which means that the wave function looks different in this direction - it is less classical. It is implied that surface or interfacial species show more quantum-mechanical behaviour, compared to the bulk. This is the basic reason for the special properties of surfaces and the origin of all interfacial phenomena. Surface chemistry should therefore be formulated strictly in terms of quantum theory, but this has never been attempted. In its present state of development it still is an empirical science, although many physico-chemical concepts are introduced to rationalize the behaviour of interfaces. [Pg.251]


See other pages where Liquid state quantum chemistry is mentioned: [Pg.57]    [Pg.209]    [Pg.369]    [Pg.314]    [Pg.217]    [Pg.865]    [Pg.1720]    [Pg.718]    [Pg.34]    [Pg.54]    [Pg.1714]    [Pg.117]    [Pg.79]    [Pg.201]    [Pg.315]    [Pg.162]    [Pg.578]    [Pg.635]    [Pg.285]    [Pg.304]    [Pg.2456]    [Pg.438]    [Pg.292]    [Pg.344]    [Pg.323]    [Pg.31]   
See also in sourсe #XX -- [ Pg.187 ]




SEARCH



Quantum chemistry

Quantum liquids

Quantum states

© 2024 chempedia.info